7 results on '"Fix, T"'
Search Results
2. Exchange coupling in NiO/CoFe(sub 2) and CoFe(sub 2)O(sub 4)/CoFe(sub 2) systems grown by pulsed laser deposition
- Author
-
Fix, T., Colis, S., Sauvet, K., Loison, J.L., Versini, G., Pourroy, G., and Dinia, A.
- Subjects
Ablation (Vaporization technology) -- Research ,Nickel compounds -- Atomic properties ,Nickel compounds -- Chemical properties ,Iron compounds -- Atomic properties ,Iron compounds -- Chemical properties ,Chemical vapor deposition -- Research ,Physics - Abstract
Exchange coupling is studied in NiO/CoFe(sub 2) and CoFe(sub 2)O(sub 4)/CoFe(sub 2) systems grown by pulsed laser deposition. An exchange coupling of 0.06 and 0.05 erg/cm(super 2) is obtained for NiO/CoFe(sub 2) and CoFe(sub 2)/CoFe(sub 2)O(sub 4) systems, respectively; no coupling is observed when NiO is integrated in the top hard electrode but coupling is observed when a CoFe(sub 2)O(sub 4) layer is used.
- Published
- 2006
3. Pressure effect on the magnetization of Se(sub 2)FeMoO(sub 6)
- Author
-
Fix, T., Pourroy, G., Versini, G., Dinia, A., Loison, J.L., Colis, S., and Schmerber, G.
- Subjects
Iron compounds -- Magnetic properties ,Molybdenum oxides -- Magnetic properties ,Dielectric films -- Research ,Thin films -- Research ,Selenium compounds -- Magnetic properties ,Physics - Abstract
Thin films of Sr(sub 2)FeMoO(sub 6)(SFMO) are grown on SrTiO(sub 3) substrates by pulsed laser deposition. The deposition rate is suspected to have a strong influence on the Fe/Mo ordering and highly magnetic samples are obtained under a low gas flow of either 20percent oxygen or a 0.3 percent oxygen or argon.
- Published
- 2005
4. Diode effect in all-oxide [Sr.sub.2]FeMo[O.sub.6]-based magnetic tunnel junctions
- Author
-
Fix, T., Stoeffler, D., Hnery, Y., Colis,S., and Dinia, A.
- Subjects
Magnetoresistance -- Research ,Laser beams -- Usage ,Voltage -- Analysis ,Physics - Abstract
Pulsed laser deposition and patterned using optical lithography were used to grow [Sr.sub.2]FeMo[O.sub.6](70nm)/SrTi[O.sub.3](3nm)/Co[Fe.sub.2][O.sub.4](30nm) magnetic tunnel junctions. It was found that the junctions showed no magnetoresistance, but presented a high asymmetry in the current versus voltage curves.
- Published
- 2006
5. Structural defects in Sr2FeMoO6 double perovskite: Experimental versus theoretical approach
- Author
-
Colis, S., Stoeffler, D., Meny, C., Fix, T., Leuvrey, C., Pourroy, G., Dinia, A., and Panissod, P.
- Subjects
Magnetization -- Research ,Perovskite -- Structure ,Perovskite -- Magnetic properties ,X-rays -- Diffraction ,X-rays -- Analysis ,Physics - Abstract
Sr2FeMoO6 (SFMO) double perovskite (DP) in varied conditions is prepared and their magnetic and structural properties with ab initio calculations of the hyperfine fields and local magnetic moments for different types of defects are correlated. The local magnetism is analyzed independently for the Fe and Mo ions, and correlated with the presence of antisite defects.
- Published
- 2005
6. Ferromagnetism in Co-doped (La,Sr)TiO3
- Author
-
Fix, T.
- Subjects
Physics - Published
- 2009
7. The Role of Dimensionality on the Optoelectronic Properties of Oxide and Halide Perovskites, and their Halide Derivatives
- Author
-
Hoye, Robert L. Z., Hidalgo, Juanita, Jagt, Robert A., Correa‐Baena, Juan‐Pablo, Fix, Thomas, MacManus‐Driscoll, Judith L., Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Hoye, RLZ [0000-0002-7675-0065], Hidalgo, J [0000-0002-5832-3262], Jagt, RA [0000-0002-0517-3758], Correa-Baena, JP [0000-0002-3860-1149], Fix, T [0000-0002-1531-725X], MacManus-Driscoll, JL [0000-0003-4987-6620], Apollo - University of Cambridge Repository, École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Downing College, Cambridge, Royal Academy of Engineering, Royal Academy Of Engineering, and Isaac Newton Trust
- Subjects
Technology ,EXCITON BINDING-ENERGY ,RUDDLESDEN-POPPER ,02 engineering and technology ,0915 Interdisciplinary Engineering ,7. Clean energy ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law.invention ,chemistry.chemical_compound ,electronic dimensionality ,law ,Photovoltaics ,EFFECTIVE IONIC-RADII ,General Materials Science ,defects ,NARROW-BAND GAP ,Chemistry, Physical ,Physics ,perovskite‐ ,0303 Macromolecular and Materials Chemistry ,021001 nanoscience & nanotechnology ,Chemistry ,Physics, Condensed Matter ,Physical Sciences ,Optoelectronics ,0210 nano-technology ,DEFECT-TOLERANT SEMICONDUCTORS ,Light-emitting diode ,Curse of dimensionality ,Materials science ,Energy & Fuels ,CHARGE-CARRIER MOBILITIES ,Materials Science ,perovskites ,Oxide ,inspired materials ,Halide ,Materials Science, Multidisciplinary ,emitting diodes ,structural dimensionality ,010402 general chemistry ,Physics, Applied ,WHITE-LIGHT EMISSION ,THIN-FILMS ,light‐ ,0912 Materials Engineering ,Science & Technology ,Renewable Energy, Sustainability and the Environment ,business.industry ,light‐ ,perovskite‐ ,0104 chemical sciences ,photovoltaics ,chemistry ,SOLAR-CELL ABSORBER ,CESIUM LEAD HALIDE ,business - Abstract
Halide perovskite semiconductors have risen to prominence in photovoltaics and light‐emitting diodes (LEDs), but traditional oxide perovskites, which overcome the stability limitations of their halide counterparts, have also recently witnessed a rise in potential as solar absorbers. One of the many important factors underpinning these developments is an understanding of the role of dimensionality on the optoelectronic properties and, consequently, on the performance of the materials in photovoltaics and LEDs. This review article examines the role of structural and electronic dimensionality, as well as form factor, in oxide and halide perovskites, and in lead‐free alternatives to halide perovskites. Insights into how dimensionality influences the band gap, stability, charge‐carrier transport, recombination processes and defect tolerance of the materials, and the impact these parameters have on device performance are brought forward. Particular emphasis is placed on carrier/exciton‐phonon coupling, which plays a significant role in the materials considered, owing to their soft lattices and composition of heavy elements, and becomes more prominent as dimensionality is reduced. It is finished with a discussion of the implications on the classes of materials future efforts should focus on, as well as the key questions that need to be addressed.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.