1. Minimal Universal Model for Chaos in Laser with Feedback
- Author
-
Stefano Euzzor, F. Tito Arecchi, Riccardo Meucci, Jean-Marc Ginoux, National Institute of Optics (CNR-INO), National Research Council - Florence, Italy, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E7 Systèmes dynamiques : théories et applications, and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Physical sciences ,01 natural sciences ,Universal model ,010305 fluids & plasmas ,law.invention ,law ,0103 physical sciences ,Homoclinic bifurcation ,010301 acoustics ,Engineering (miscellaneous) ,Physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Co2 laser ,Applied Mathematics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Laser science ,Nonlinear Sciences - Chaotic Dynamics ,Laser ,Nonlinear Sciences - Adaptation and Self-Organizing Systems ,CHAOS (operating system) ,Nonlinear system ,Classical mechanics ,Modeling and Simulation ,Chaotic Dynamics (nlin.CD) ,Adaptation and Self-Organizing Systems (nlin.AO) ,Optics (physics.optics) ,Physics - Optics - Abstract
International audience; We revisit the model of the laser with feedback and the minimal nonlinearity leading to chaos. Although the model has its origin in laser physics, with peculiarities related to the [Formula: see text] laser, it belongs to the class of the three-dimensional paradigmatic nonlinear oscillator models giving chaos. The proposed model contains three key nonlinearities, two of which are of the type [Formula: see text], where [Formula: see text] and [Formula: see text] are the fast and slow variables. The third one is of the type [Formula: see text], where [Formula: see text] is an intermediate feedback variable. We analytically demonstrate that it is essential for producing chaos via local or global homoclinic bifurcations. Its electronic implementation in the range of kilo Hertz region confirms its potential in describing phenomena evolving on different time scales.
- Published
- 2021