1. Numerical simulations and infrared spectro-interferometry reveal the wind collision region in gamma2 Velorum
- Author
-
Lamberts, A., Millour, F., Liermann, A., Dessart, L., Driebe, T., Duvert, G., Finsterle, W., Girault, V., Massi, F., Petrov, R. G., Schmutz, W., Weigelt, G., Chesneau, O., Petrov, G., Caltech Department of Astronomy [Pasadena], California Institute of Technology (CALTECH), Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Radioastronomie (MPIFR), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), INAF - Osservatorio Astrofisico di Arcetri (OAA), Istituto Nazionale di Astrofisica (INAF), ITA, USA, FRA, DEU, and CHE
- Subjects
Colliding-wind binary ,Physics ,Very Large Telescope ,010308 nuclear & particles physics ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Collision ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,01 natural sciences ,Spectral line ,Interferometry ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,O-type star - Abstract
Colliding stellar winds in massive binary systems have been studied through their radio, optical lines and strong X-ray emission for decades. More recently, near-infrared spectrointerferometric observations have become available in a few systems, but isolating the contribution from the individual stars and the wind collision region still remains a challenge. In this paper, we study the colliding wind binary gamma2 Velorum and aim at identifying the wind collision zone from infrared interferometric data, which provide unique spatial information to determine the wind properties. Our analysis is based on multi-epoch VLTI/AMBER data that allows us to separate the spectral components of both stars. First, we determine the astrometric solution of the binary and confirm previous distance measurements. We then analyse the spectra of the individual stars, showing that the O star spectrum is peculiar within its class. Then, we perform three-dimensional hydrodynamic simulations of the system from which we extract model images, visibility curves and closure phases which can be directly compared with the observed data. The hydrodynamic simulations reveal the 3D spiral structure of the wind collision region, which results in phase-dependent emission maps. Our model visibility curves and closure phases provide a good match when the wind collision region accounts for 3 to 10 per cent of the total flux in the near infrared. The dialogue between hydrodynamic simulations, radiative transfer models and observations allows us to fully exploit the observations. Similar efforts will be crucial to study circumstellar environments with the new generation of VLTI instruments like GRAVITY and MATISSE., 17 pages, 14 figures, accepted to MNRAS March, 7, 2017
- Published
- 2017