1. Discovery of a Gamma-Ray Black Widow Pulsar by GPU-accelerated Einstein@Home
- Author
-
Tom Marsh, Roger W. Romani, Fernando Camilo, B. Machenschalk, C. Aulbert, Mallory S. E. Roberts, M. A. Papa, D. Kandel, S. Kwang, Paul S. Ray, Jayanta Roy, H. J. Pletsch, Michael Kramer, Di Li, Elizabeth C. Ferrara, Paulo C. C. Freire, Cees Bassa, Matthew Kerr, Pei Wang, Scott M. Ransom, Banafsheh Beheshtipour, M. B. Mickaliger, L. Nieder, C. J. Clark, S. Sanpa-arsa, Benjamin William Allen, Lucas Guillemot, Rene P. Breton, C. Choquet, Ramesh Karuppusamy, Ewan Barr, Ismaël Cognard, H. Fehrmann, A. Ashok, Bhaswati Bhattacharyya, O. Behnke, V. S. Dhillon, J. Wu, Jason W. T. Hessels, Zhichen Pan, B. Steltner, Ziggy Pleunis, High Energy Astrophys. & Astropart. Phys (API, FNWI), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), and Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
- Subjects
Einstein@Home ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Light curve ,Orbital period ,01 natural sciences ,Binary pulsar ,Neutron star ,Pulsar ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Millisecond pulsar ,0103 physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Fermi Gamma-ray Space Telescope - Abstract
We report the discovery of 1.97 ms period gamma-ray pulsations from the 75 minute orbital-period binary pulsar now named PSR J1653-0158. The associated Fermi Large Area Telescope gamma-ray source 4FGL J1653.6-0158 has long been expected to harbor a binary millisecond pulsar. Despite the pulsar-like gamma-ray spectrum and candidate optical/X-ray associations -- whose periodic brightness modulations suggested an orbit -- no radio pulsations had been found in many searches. The pulsar was discovered by directly searching the gamma-ray data using the GPU-accelerated Einstein@Home distributed volunteer computing system. The multi-dimensional parameter space was bounded by positional and orbital constraints obtained from the optical counterpart. More sensitive analyses of archival and new radio data using knowledge of the pulsar timing solution yield very stringent upper limits on radio emission. Any radio emission is thus either exceptionally weak, or eclipsed for a large fraction of the time. The pulsar has one of the three lowest inferred surface magnetic-field strengths of any known pulsar with $B_{\rm surf} \approx 4 \times 10^{7}\,$G. The resulting mass function, combined with models of the companion star's optical light curve and spectra, suggests a pulsar mass $\gtrsim 2\,M_{\odot}$. The companion is light-weight with mass $\sim 0.01\,M_{\odot}$, and the orbital period is the shortest known for any rotation-powered binary pulsar. This discovery demonstrates the Fermi Large Area Telescope's potential to discover extreme pulsars that would otherwise remain undetected., Comment: 12 pages, 3 figures, published in ApJL
- Published
- 2020