1. Ultrafast Thermo-Optical Dynamics of a Single Metal Nano-Object
- Author
-
Aurélien Crut, Francesco Banfi, Fabio Medeghini, Natalia Del Fatti, Francesco Rossella, Michele Diego, Paolo Maioli, Romain Rouxel, Fabrice Vallée, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), FemtoNanoOptics (FemtoNanoOptics), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Scuola Normale Superiore di Pisa (SNS), Département d’Anesthésie-Réanimation-SMUR [Hôpital Lariboisière], Hôpitaux Universitaire Saint-Louis, Lariboisière, Fernand-Widal, Marqueurs cardiovasculaires en situation de stress (MASCOT (UMR_S_942 / U942)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Groupe Hospitalier Saint Louis - Lariboisière - Fernand Widal [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Université Sorbonne Paris Nord, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris-Saclay, Modelling brain structure, function and variability based on high-field MRI data (PARIETAL), Service NEUROSPIN (NEUROSPIN), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Scuola Normale Superiore (NEST), and Istituto di nanoscienze-CNR
- Subjects
Materials science ,genetic structures ,Physical and chemical processes ,Kapitza resistance ,Interfaces ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,Quantum mechanics ,[SPI]Engineering Sciences [physics] ,0103 physical sciences ,Nano ,Nanoscale heat transfer ,Single-particle spectroscopy ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,010306 general physics ,Spectroscopy ,[PHYS]Physics [physics] ,business.industry ,technology, industry, and agriculture ,021001 nanoscience & nanotechnology ,Object (computer science) ,Thermoplasmonics ,eye diseases ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Metal nano-objects ,Optoelectronics ,Probes ,sense organs ,Gold ,0210 nano-technology ,business ,Ultrashort pulse - Abstract
International audience; Single-particle optical spectroscopy methods have enabled quantitative investigations of the optical, electronic, and vibrational responses of nano-objects in the recent years. In this work, single-particle pump–probe optical spectroscopy was exploited to investigate the cooling dynamics of individual gold nanodisks supported on a sapphire substrate. The measured time-resolved signals are shown to directly reflect the temporal evolution of the nanodisk temperature following its sudden excitation. The single-particle character of the experiments enables a quantitative analysis of the amplitudes of the measured time-resolved signals, allowing to rationalize their large probe wavelength dependence. The measured cooling kinetics mainly depends on the nanodisk thickness and to a much lesser extent on the diameter, in agreement with numerical simulations based on Fourier law of heat diffusion, also accounting for the presence of a thermal resistance at the interface between the nanodisks and their substrate. For the explored diameter range (60–190 nm), the nanodisk cooling rate is limited by heat transfer at the gold–sapphire interface, whose thermal conductance can be estimated for each investigated nanodisk.
- Published
- 2020