1. Effects of aerobic and resistance exercise training associated with carnosine precursor supplementation on maximal strength and V̇O 2max in rats with heart failure.
- Author
-
Stefani GP, Capalonga L, da Silva LR, Heck TG, Frizzo MN, Sulzbacher LM, Sulzbacher MM, de Batista D, Vedovatto S, Bertoni APS, Wink MR, and Dal Lago P
- Subjects
- Animals, Disease Models, Animal, Histidine pharmacology, Male, Rats, Rats, Wistar, beta-Alanine pharmacology, Carnosine pharmacology, Heart Failure blood, Heart Failure drug therapy, Heart Failure physiopathology, Oxygen blood, Physical Conditioning, Animal
- Abstract
Background: Combined exercise training (CET) has been associated with positive responses in the clinical status of patients with heart failure (HF). Other nonpharmacological tools, such as amino acid supplementation, may further enhance its adaptation. The aim was to test whether CET associated with supplementing carnosine precursors could present better responses in the functional capacity and biochemical variables of rats with HF., Methods: Twenty-one male Wistar rats were subjected to myocardial infarction and allocated to three groups: sedentary (SED, n = 7), CET supplemented with placebo (CETP, n = 7), and CET with HF supplemented with β-alanine and L-histidine (CETS, n = 7). The trained animals were submitted to a strength protocol three times per week. Aerobic training was conducted twice per week. The supplemented group received β-alanine and L-histidine orally (250 mg/kg per day)., Results: Maximum oxygen uptake, running distance, time to exhaustion and maximum strength were higher in the CET-P group than that in the SED group and even higher in the CET-S group than that in the CET-P group (P < 0.01). CET-S showed lower oxidative stress and inflammation markers and higher heat shock protein 72 kDa content and mRNA expression for calcium transporters in the skeletal muscle compared to SED., Conclusion: CET together with β-alanine and L-histidine supplementation in rats with HF can elicit adaptations in both maximum oxygen uptake, running distance, time to exhaustion, maximum strength, oxidative stress, inflammation and mRNA expression. Carnosine may influence beneficial adjustments in the cell stress response in the skeletal muscle and upregulate the mRNA expression of calcium transporters., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF