1. Large-scale phylogenomic analysis provides new insights into the phylogeny of the class Oligohymenophorea (Protista, Ciliophora) with establishment of a new subclass Urocentria nov. subcl.
- Author
-
Wang C, Gao Y, Lu B, Chi Y, Zhang T, El-Serehy HA, Al-Farraj SA, Li L, Song W, and Gao F
- Subjects
- Biological Evolution, Cell Nucleus genetics, Codon, Terminator, Introns, Sequence Analysis, DNA, Transcriptome, Oligohymenophorea classification, Phylogeny
- Abstract
The class Oligohymenophorea is one of the most diverse assemblage of ciliated protists, which are particularly important in fundamental biological studies including understanding the evolutionary relationships among the lineages. Phylogenetic relationships within the class remain largely elusive, especially within the subclass Peniculia, which contains the long-standing problematic taxa Urocentrum and Paranassula. In the present study, we sequenced the genomes and/or transcriptomes of six non-culturable oligohymenophoreans using single-cell sequencing techniques. Phylogenomic analysis was performed based on expanded taxon sampling of 85 taxa, including 157 nuclear genes encoding 36,953 amino acids. The results indicate that: (1) urocentrids form an independent branch that is sister to the clade formed by Scuticociliatia and Hymenostomatia, which, together with the morphological data, supports the establishment of a new subclass, Urocentria n. subcl., within Oligohymenophorea; (2) phylogenomic analysis and ortholog comparison reveal a close relationship between Paranassula and peniculines, providing corroborative evidence for removing Paranassula from Nassulida and elevating it as an order, Paranassulida, within the subclass Peniculia; (3) based on the phylogenomic analyses and morphological data, we hypothesize that Peritrichia is the earliest diverging clade within Oligohymenophorea while Scuticociliatia and Hymenostomatia share the most common ancestor, followed successively by Urocentria and Peniculia. In addition, stop codon analyses indicate that oligohymenophoreans widely use UGA as the stop codon, while UAR are reassigned to glutamate (peritrichs) or glutamine (others), supporting the evolutionary hypothesis., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF