1. Optimal photoelectron circular dichroism of a model chiral system.
- Author
-
von Rudorff, Guido F., Artemyev, Anton N., Lagutin, Boris M., and Demekhin, Philipp V.
- Subjects
- *
CIRCULAR dichroism , *PHOTOELECTRONS , *DEGREES of freedom , *CHIRALITY of nuclear particles , *ELECTRONIC structure , *CHEMICAL bond lengths - Abstract
We optimize the internuclear geometry and electronic structure of a model chiral system to achieve a maximal photoelectron circular dichroism (PECD) in its one-photon ionization by circularly polarized light. The electronic structure calculations are performed by the single center method, while the optimization is done using quantum alchemy employing a Taylor series expansion. Thereby, the effect of bond lengths and uncompensated charge distributions on the chiral response of the model is investigated theoretically in some detail. It is demonstrated that manipulating a chiral asymmetry of the ionic potential may enhance the dichroic parameter (i.e., the PECD) of the randomly oriented model system well beyond β1 = 25%. Furthermore, we demonstrate that quantum alchemy is applicable to PECD despite the unusually strong coupling of spatial and electronic degrees of freedom and discuss the relative impact of the individual degrees of freedom in this model system. We define the necessary conditions for the computational design of PECD for real (non-model) chiral molecules using our approach. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF