4 results on '"Rabinovitz, Isaac"'
Search Results
2. The Calcium/Calcineurin Pathway Promotes Hemidesmosome Stability through Inhibition of β4 Integrin Phosphorylation.
- Author
-
Kashyap, Trinayan and Rabinovitz, Isaac
- Subjects
- *
HEMIDESMOSOMES , *CALCIUM , *INTEGRINS , *PHOSPHORYLATION , *CALCINEURIN - Abstract
Cell migration depends on cells being able to create and disassemble adhesive contacts. Hemidesmosomes are multiprotein structures that attach epithelia to basal lamina and disassemble during migration and carcinoma invasion. Phosphorylation of the β4 integrin, a hemidesmosome component, induces disassembly. Although kinases involved in β4 phosphorylation have been identified, little is known about phosphatases countering kinase action. Here we report that calcineurin, a serine-threonine protein phosphatase, regulates β4 phosphorylation. Calcineurin inhibitor cyclosporin A (CsA) and calcineurin-siRNA increase β4 phosphorylation, induce hemidesmosome disassembly, and increase migration in HaCat keratinocytes, suggesting that calcineurin negatively regulates β4 phosphorylation. We found no direct dephosphorylation of β4 by calcineurin or association between β4 and calcineurin, suggesting indirect regulation of β4 phosphorylation. We therefore assessed calcineurin influence on MAPK and PKC, known to phosphorylate β4. CsA increased MAPK activity, whereas MAPK inhibitors reduced CsA-induced β4 phosphorylation, suggesting that calcineurin restricts β4 phosphorylation by MAPK. Calcineurin is activated by calcium. Increased [Ca2+]i reduces β4 phosphorylation and stabilizes hemidesmosomes, effects that are reversed by CsA, indicating that calcineurin mediates calcium effects on β4. However, MAPK activation is increased when [Ca2+]i is increased, suggesting that calcineurin activates an additional mechanism that counteracts MAPK-induced β4 phosphorylation. Interestingly, in some squamous cell carcinoma cells, which have reduced hemidesmosomes and increased β4 phosphorylation, an increase in [Ca2+]i using thapsigargin, bradykinin, or acetylcholine can increase hemidesmosomes and reduce β4 phosphorylation in a calcineurin-dependent manner. These findings have implications in calcineurin-inhibitor induced carcinoma, a complication of immunosuppressive therapy. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
3. Ribosomal S6 Kinase (RSK) Regulates Phosphorylation of Filamin A on an Important Regulatory Site.
- Author
-
Woo, Michele S., Ohta, Yasutaka, Rabinovitz, Isaac, Stossell, Thomas P., and Blenis, John
- Subjects
PHOSPHORYLATION ,MITOGENS ,GENE expression ,CELL proliferation ,EPIDERMAL growth factor ,GENETIC mutation - Abstract
The Ras-mitogen-activated protein (Ras.MAP) kinase pathway regulates various cellular processes, including gene expression, cell proliferation, and survival. Ribosomal S6 kinase (RSK), a key player in this pathway, modulates the activities of several cytoplasmic and nuclear proteins via phosphorylation. Here we report the characterization of the cytoskeletal protein filamin A (FLNa) as a membrane-associated RSK target. We show that the N-terminal kinase domain of RSK phosphorylates FLNa on Ser
2152 in response to mitogens. Inhibition of MAP kinase signaling with UO126 or mutation of Ser2152 to Ala on FLNa prevents epidermal growth factor (EGF)-stimulated phosphorylation of FLNa in vivo. Furthermore, phosphorylation of FLNa on Ser2152 is significantly enhanced by the expression of wild-type RSK and antagonized by kinase-inactive RSK or specific reduction of endogenous RSK. Strikingly, EGF-induced, FLNa-dependent migration of human melanoma cells is significantly reduced by UO126 treatment. Together, these data provide substantial evidence that RSK phosphorylates FLNa on Ser2152 in vivo. Given that phosphorylation of FLNa on Ser2152 is required for Pak1-mediated membrane ruffling, our results suggest a novel role for RSK in the regulation of the actin cytoskeleton. [ABSTRACT FROM AUTHOR]- Published
- 2004
- Full Text
- View/download PDF
4. Integrin-Associated CD151 Drives ErbB2-Evoked Mammary Tumor Onset and Metastasis.
- Author
-
Xinyu Deng, Qinglin Li, Hoff, John, Novak, Marian, Yang, Helen, Hongyan Jin, Erfani, Sonia F., Sharma, Chandan, Pengcheng Zhou, Rabinovitz, Isaac, Sonnenberg, Arnoud, Yajun Yi, Zhou, Peter, Stipp, Christopher S., Kaetzel, David M., Hemler, Martin E., and Yang, Xiuwei H.
- Subjects
- *
BREAST cancer , *TUMORS , *METASTASIS , *EPITHELIUM , *PHOSPHORYLATION , *CHEMICAL reactions - Abstract
ErbB2+ human breast cancer is a major clinical problem. Prior results have suggested that tetraspanin CD151 might contribute to ErbB2-driven breast cancer growth, survival, and metastasis. In other cancer types, CD151 sometimes supports tumor growth and metastasis. However, a definitive test of CD151 effects on de novo breast cancer initiation, growth, and metastasis has not previously been done. We used CD151 gene-deleted mice expressing the MMTV-ErbB2 transgene to show that CD151 strongly supports ErbB2+ mammary tumor initiation and metastasis. Delayed tumor onset (by 70-100 days) in the absence of CD151 was accompanied by reduced survival of mammary epithelial cells and impaired activation of FAK- and MAPK-dependent pathways. Both primary tumors and metastatic nodules showed smooth, regular borders, consistent with a less invasive phenotype. Furthermore, consistent with impaired oncogenesis and decreased metastasis, CD151-targeted MCF-10A/ErbB2 cells showed substantial decreases in three-dimensional colony formation, EGF-stimulated tumor cell motility, invasion, and transendothelial migration. These CD151-dependent functions were largely mediated through α6β4 integrin. Moreover, CD151 ablation substantially prevented PKC- and EGFR/ERK-dependent α6β4 integrin phosphorylation, consistent with retention of epithelial cell polarity and intermediate filament cytoskeletal connections, which helps to explain diminished metastasis. Finally, clinical data analyses revealed a strong correlation between CD151 and ErbB2 expression and metastasis-free survival of breast cancer patients. In conclusion, we provide strong evidence that CD151 collaborates with LB integrins (particularly α6β4) and ErbB2 (and EGFR) receptors to regulate multiple signaling pathways, thereby driving mammary tumor onset, survival, and metastasis. Consequently, CD151 is a useful therapeutic target in malignant ErbB2+ breast cancer. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.