1. Measurement of the generalized spin polarizabilities of the neutron in the low $Q^2$ region
- Author
-
Juan C. Cornejo, Seung-Tae Woo, D. Hayes, Charles Hyde, Bogdan Wojtsekhowski, Kebin Wang, Seema Dhamija, W. Boeglin, Antonin Vacheret, Kathryn E. Keister, Sirish Nanda, Jennifer Niedziela, D. S. Armstrong, Simon Širca, P. Solvignon, A. Kelleher, T. Holmstrom, K. Kramer, Thomas B. Humensky, Ronald Pandolfi, Ngyen Ton, S. Frullani, Mikhail Niskin, R. Subedi, Geraud Laveissiere, X. Zheng, Douglas Higinbotham, Sergey Abrahamyan, L. J. Kaufman, B. Ma, John J. Lerose, L. Lagamba, J. Gomez, Jian-Ping Chen, Haiyan Gao, Nilanga Liyanage, Lu Wan, P. Monaghan, Raffaele De Leo, Arun Saha, R. J. Feuerbach, B. Craver, Olivier Gayou, Karl Slifer, Jing Yuan, Xiandong Jiang, Stephen J. Bailey, Alexander Shabetai, R. A. Lindgren, V. Laine, L. Zhu, Chia-Cheh Chang, V. Sulkosky, F. Garibaldi, Zein-Eddine Meziani, L. Coman, Florentin Butaru, Yi Qiang, Jaideep Singh, Chao Peng, Arie Beck, R. Michaels, Robert Stringer, David Lhuillier, Konrad A. Aniol, Gerfried Kumbartzki, Gordon D. Cates, Seonho Choi, Paul Ulmer, Mehdi Meziane, Cornelis W. de Jager, Ronald Gilman, A. Camsonne, Peter Markowitz, H. F. Ibrahim, Wolfgang Korsch, Milan Potokar, Ronald Ransome, Xiaohui Zhan, Andrew Puckett, J. O. Hansen, J. M. Finn, M. Iodice, Kirsten Fuoti, A. Kolarkar, Joseph D. Denton, E. Chudakov, Pierre Bertin, Hai-Jiang Lu, Norm Kolb, T. Averett, Kent Paschke, Charles Glashausser, Rikki Roche, R. Snyder, G. M. Urciuoli, F. Cusanno, Bryan J. Moffit, William A. Tobias, F. William Hersman, A. Deur, B. Reitz, E. Voutier, V. A. Punjabi, A.V. Glamazdin, Huan Yao, W. Kim, Kathleen R. McCormick, Demetrius J. Margaziotis, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Département de Physique Nucléaire (ex SPhN) (DPHN), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
Physics ,experimental results, nucleon: structure, spin: precession, n: spin, spin: polarizability, momentum transfer: low, Jefferson Lab, effective field theory: chiral, electromagnetic field, strong interaction, nonperturbative ,Particle physics ,Proton ,Strong interaction ,Hadron ,Nuclear Theory ,General Physics and Astronomy ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,3. Good health ,010305 fluids & plasmas ,0103 physical sciences ,Quark–gluon plasma ,Effective field theory ,Neutron ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nucleon ,Nuclear Experiment ,Spin-½ - Abstract
Understanding the nucleon spin structure in the regime where the strong interaction becomes truly strong poses a challenge to both experiment and theory. At energy scales below the nucleon mass of about 1 GeV, the intense interaction among the quarks and gluons inside the nucleon makes them highly correlated. Their coherent behaviour causes the emergence of effective degrees of freedom, requiring the application of non-perturbative techniques, such as chiral effective field theory. Here, we present measurements of the neutron's generalized spin-polarizabilities that quantify the neutron's spin precession under electromagnetic fields at very low energy-momentum transfer squared down to 0.035 GeV$^2$. In this regime, chiral effective field theory calculations are expected to be applicable. Our data, however, show a strong discrepancy with these predictions, presenting a challenge to the current description of the neutron's spin properties., V1: initial version submitted to Nature Physics. V2: Published version. 16 pages, 7 figures. Additional material: 4 data tables (18 pages) V3: Typo corrected in author list. Paper content unchanged
- Published
- 2021
- Full Text
- View/download PDF