1. Controlled Immobilization of a Palladium Complex/Laccase Hybrid into a Macrocellular Siliceous Host.
- Author
-
Yang, Fangfang, Rousselot‐Pailley, Pierre, Nicoletti, Cendrine, Simaan, A. Jalila, Faure, Bruno, Courvoisier‐Dezord, Elise, Amouric, Agnès, Charmasson, Yolande, Backov, Rénal, Tron, Thierry, and Mekmouche, Yasmina
- Subjects
PALLADIUM compounds ,CATALYTIC activity ,HETEROGENEOUS catalysts ,LACCASE ,PROOF of concept ,ALCOHOL oxidation ,CATALYSTS - Abstract
This study investigates the site‐directed immobilization of a hybrid catalyst bearing a biquinoline‐based‐Pd(II) complex (1) and a robust laccase within cavities of a silica foam to favor veratryl alcohol oxidation. We performed the grafting of 1 at a unique surface located lysine of two laccase variants, either at closed (1⊂UNIK157) or opposite position (1⊂UNIK71) of the enzyme oxidation site. After immobilization into the cavities of silica monoliths bearing hierarchical porosity, we show that catalytic activity is dependent on the orientation and loading of each hybrid, 1⊂UNIK157 being twice as active than 1⊂UNIK71 (203 TON vs 100 TON) when operating under continuous flow. These systems can be reused 5 times, with an operational activity remaining as high as 40 %. We show that the synergy between 1 and laccase can be tuned within the foam. This work is a proof of concept for controlling the organization of a heterogeneous hybrid catalyst using a Pd/laccase/silica foam. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF