216 results on '"Archosauria"'
Search Results
2. Paleobiology of Dinosauria : Ecology, Life History, and Neuroanatomy
- Author
-
Peñaherrera-Aguirre, Mateo, Jurgensen, JohnMichael, Samuelson, Mystera M., Section editor, Vonk, Jennifer, editor, and Shackelford, Todd K., editor
- Published
- 2022
- Full Text
- View/download PDF
3. Gnathovorax cabreirai: a new early dinosaur and the origin and initial radiation of predatory dinosaurs
- Author
-
Cristian Pacheco, Rodrigo T. Müller, Max Langer, Flávio A. Pretto, Leonardo Kerber, and Sérgio Dias da Silva
- Subjects
Archosauria ,Brazil ,Carnian ,Herrerasauridae ,Paleobiology ,Santa Maria Formation ,Medicine ,Biology (General) ,QH301-705.5 - Abstract
Predatory dinosaurs were an important ecological component of terrestrial Mesozoic ecosystems. Though theropod dinosaurs carried this role during the Jurassic and Cretaceous Periods (and probably the post-Carnian portion of the Triassic), it is difficult to depict the Carnian scenario, due to the scarcity of fossils. Until now, knowledge on the earliest predatory dinosaurs mostly relies on herrerasaurids recorded in Carnian strata of South America. Phylogenetic investigations recovered the clade in different positions within Dinosauria, whereas fewer studies challenged its monophyly. Although herrerasaurid fossils are much better recorded in present-day Argentina than in Brazil, Argentinean strata so far yielded no fairly complete skeleton representing a single individual. Here, we describe Gnathovorax cabreirai, a new herrerasaurid based on an exquisite specimen found as part of a multitaxic association form southern Brazil. The type specimen comprises a complete and well-preserved articulated skeleton, preserved in close association (side by side) with rhynchosaur and cynodont remains. Given its superb state of preservation and completeness, the new specimen sheds light into poorly understood aspects of the herrerasaurid anatomy, including endocranial soft tissues. The specimen also reinforces the monophyletic status of the group, and provides clues on the ecomorphology of the early carnivorous dinosaurs. Indeed, an ecomorphological analysis employing dental traits indicates that herrerasaurids occupy a particular area in the morphospace of faunivorous dinosaurs, which partially overlaps the area occupied by post-Carnian theropods. This indicates that herrerasaurid dinosaurs preceded the ecological role that later would be occupied by large to medium-sized theropods.
- Published
- 2019
- Full Text
- View/download PDF
4. Gnathovorax cabreirai: a new early dinosaur and the origin and initial radiation of predatory dinosaurs.
- Author
-
Pacheco, Cristian, Müller, Rodrigo T., Langer, Max, Pretto, Flávio A., Kerber, Leonardo, and Dias da Silva, Sérgio
- Subjects
DINOSAURS ,CRETACEOUS Period ,JURASSIC Period ,SAURISCHIA ,RADIATION - Abstract
Predatory dinosaurs were an important ecological component of terrestrial Mesozoic ecosystems. Though theropod dinosaurs carried this role during the Jurassic and Cretaceous Periods (and probably the post-Carnian portion of the Triassic), it is difficult to depict the Carnian scenario, due to the scarcity of fossils. Until now, knowledge on the earliest predatory dinosaurs mostly relies on herrerasaurids recorded in Carnian strata of South America. Phylogenetic investigations recovered the clade in different positions within Dinosauria, whereas fewer studies challenged its monophyly. Although herrerasaurid fossils are much better recorded in present-day Argentina than in Brazil, Argentinean strata so far yielded no fairly complete skeleton representing a single individual. Here, we describe Gnathovorax cabreirai, a new herrerasaurid based on an exquisite specimen found as part of a multitaxic association form southern Brazil. The type specimen comprises a complete and well-preserved articulated skeleton, preserved in close association (side by side) with rhynchosaur and cynodont remains. Given its superb state of preservation and completeness, the new specimen sheds light into poorly understood aspects of the herrerasaurid anatomy, including endocranial soft tissues. The specimen also reinforces the monophyletic status of the group, and provides clues on the ecomorphology of the early carnivorous dinosaurs. Indeed, an ecomorphological analysis employing dental traits indicates that herrerasaurids occupy a particular area in the morphospace of faunivorous dinosaurs, which partially overlaps the area occupied by post-Carnian theropods. This indicates that herrerasaurid dinosaurs preceded the ecological role that later would be occupied by large to medium-sized theropods. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
5. A new carcharodontosaurian theropod (Dinosauria: Saurischia) from the Lower Cretaceous of Thailand.
- Author
-
Chokchaloemwong, Duangsuda, Hattori, Soki, Cuesta, Elena, Jintasakul, Pratueng, Shibata, Masateru, and Azuma, Yoichi
- Subjects
- *
DINOSAURS , *SAURISCHIA , *CERVICAL vertebrae , *THORACIC vertebrae , *MUSCULOSKELETAL system - Abstract
The isolated fossil remains of an allosauroid theropod from the Lower Cretaceous Khok Kruat Formation of Khorat, Thailand, are described in this study. Detailed observations support the establishment of a new allosauroid, Siamraptor suwati gen. et sp. nov. This new taxon is based on a composite cranial and postcranial skeleton comprising premaxilla, maxilla, jugal, surangular, prearticular, articular, vertebrae, manual ungual, ischium, tibia, and pedal phalanx. It is distinguished from other allosauroids by characters such as a jugal with straight ventral margin and dorsoventrally deep anterior process below the orbit, a surangular with a deep oval concavity at the posterior end of the lateral shelf and four posterior surangular foramina, a long and narrow groove along the suture between the surangular and the prearticular, an articular with a foramen at the notch of the suture with the prearticular, an anterior cervical vertebra with a pneumatic foramen (so-called ‘pleurocoel’) excavating parapophysis, and cervical and posterior dorsal vertebrae penetrated by a pair of small foramina bilaterally at the base of the neural spine. The presence of a huge number of camerae and pneumatopores in cranial and axial elements reveals a remarkable skeletal pneumatic system in this new taxon. Moreover, the phylogenetic analyses revealed that Siamraptor is a basal taxon of Carcharodontosauria, involving a new sight of the paleobiogeographical context of this group. Siamraptor is the best preserved carcharodontosaurian theropod in Southeast Asia, and it sheds new light on the early evolutionary history of Carcharodontosauria. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
6. Skull remains of the dinosaur Saturnalia tupiniquim (Late Triassic, Brazil): With comments on the early evolution of sauropodomorph feeding behaviour.
- Author
-
Bronzati, Mario, Müller, Rodrigo T., and Langer, Max C.
- Subjects
- *
SKULL , *DINOSAURS , *MUSCULOSKELETAL system , *BONES , *PALEOBIOLOGY , *FEMUR - Abstract
Saturnalia tupiniquim is a sauropodomorph dinosaur from the Late Triassic (Carnian–c. 233 Ma) Santa Maria Formation of Brazil. Due to its phylogenetic position and age, it is important for studies focusing on the early evolution of both dinosaurs and sauropodomorphs. The osteology of Saturnalia has been described in a series of papers, but its cranial anatomy remains mostly unknown. Here, we describe the skull bones of one of its paratypes (only in the type-series to possess such remains) based on CT Scan data. The newly described elements allowed estimating the cranial length of Saturnalia and provide additional support for the presence of a reduced skull (i.e. two thirds of the femoral length) in this taxon, as typical of later sauropodomorphs. Skull reduction in Saturnalia could be related to an increased efficiency for predatory feeding behaviour, allowing fast movements of the head in order to secure small and elusive prey, a hypothesis also supported by data from its tooth and brain morphology. A principal co-ordinates analysis of the sauropodomorph jaw feeding apparatus shows marked shifts in morphospace occupation in different stages of the first 30 million years of their evolutionary history. One of these shifts is observed between non-plateosaurian and plateosaurian sauropodomorphs, suggesting that, despite also having an omnivorous diet, the feeding behaviour of some early Carnian sauropodomorphs, such as Saturnalia, was markedly different from that of later Triassic taxa. A second shift, between Late Triassic and Early Jurassic taxa, is congruent with a floral turnover hypothesis across the Triassic-Jurassic boundary. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
7. The first Miocene fossils of Lacerta cf. trilineata (Squamata, Lacertidae) with a comparative study of the main cranial osteological differences in green lizards and their relatives.
- Author
-
Čerňanský, Andrej and Syromyatnikova, Elena V.
- Subjects
- *
LACERTIDAE , *VIVIPAROUS lizard , *LIZARDS , *SQUAMATA , *COMPARATIVE anatomy , *PERCH , *FOSSIL hominids , *FOSSIL collection - Abstract
We here describe the first fossil remains of a green lizard of the Lacerta group from the late Miocene (MN 13) of the Solnechnodolsk locality in southern European Russia. This region of Europe is crucial for our understanding of the paleobiogeography and evolution of these middle-sized lizards. Although this clade has a broad geographical distribution across the continent today, its presence in the fossil record has only rarely been reported. In contrast to that, the material described here is abundant, consists of a premaxilla, maxillae, frontals, parietals, jugals, quadrate, pterygoids, dentaries and vertebrae. The comparison of these elements to all extant green lizard species shows that these fossils are indistinguishable from Lacerta trilineata. Thus, they form the first potential evidence of the occurrence of this species in the Miocene. This may be also used as a potential calibration point for further studies. Together with other lizard fossils, Solnechnodolsk shows an interesting combination of survivors and the dawn of modern species. This locality provides important evidence for the transition of an archaic Miocene world to the modern diversity of lizards in Europe. In addition, this article represents a contribution to the knowledge of the comparative osteological anatomy of the selected cranial elements in lacertids. This study gives special emphasis to the green lizards, but new data are also presented for related taxa, e.g., Timon lepidus, Podarcis muralis or Zootoca vivipara. Although the green lizards include several cryptic species for which determination based on isolated osteological material would be expected to be difficult, our comparisons show several important morphological differences, although a high degree of variability is present. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
8. A new hadrosauroid (Dinosauria: Ornithopoda) from the Late Cretaceous Baynshire Formation of the Gobi Desert (Mongolia).
- Author
-
Tsogtbaatar, Khishigjav, Weishampel, David B., Evans, David C., and Watabe, Mahito
- Subjects
- *
DINOSAURS , *MUSCULOSKELETAL system , *LIFE sciences , *PALEOBIOLOGY , *ANATOMY , *INSECT anatomy , *ILIUM - Abstract
A new genus and species of non-hadrosaurid hadrosauroid, Gobihadros mongoliensis, is described from a virtually complete and undeformed skull and postcranial skeleton, as well as extensive referred material, collected from the Baynshire Formation (Cenomanian-Santonian) of the central and eastern Gobi Desert, Mongolia. Gobihadros mongoliensis is the first non-hadrosaurid hadrosauroid from the Late Cretaceous of central Asia known from a complete, articulated skull and skeleton. The material reveals the skeletal anatomy of a proximate sister taxon to Hadrosauridae in remarkable detail. Gobihadros is similar to Bactrosaurus johnsoni and Gilmoreosaurus mongoliensis, but can be distinguished from them in several autapomorphic traits, including the maximum number (three) of functional dentary teeth per tooth position, a premaxillary oral margin with a ‘double-layer morphology’, and a sigmoidal dorsal outline of the ilium with a well-developed, fan-shaped posterior process. All of these characters in Gobihadros are inferred to be convergent in Hadrosauridae. Phylogenetic analysis positions Gobihadros mongoliensis as a Bactrosaurus-grade hadrosauromorph hadrosauroid. Its relationship with Maastrichtian hadrosaurids from Asia (e.g., Saurolophus angustirostris, Kerberosaurus manakini, Wulagasaurus dongi, Kundurosaurus nagornyi) are sufficiently distant to indicate that these latter taxa owe their distribution to migration from North America across Beringia, rather than having a common Asian origin with Go. mongoliensis. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
9. An abelisaurid (Dinosauria: Theropoda) ilium from the Upper Cretaceous (Cenomanian) of the Kem Kem beds, Morocco.
- Author
-
Zitouni, Slimane, Laurent, Christian, Dyke, Gareth, and Jalil, Nour-Eddine
- Subjects
- *
DINOSAURS , *ILIUM , *SAURISCHIA , *FOSSILS , *GEOLOGICAL time scales , *PALEONTOLOGY , *JURASSIC Period - Abstract
Abelisaurid theropods first appear in the fossil record in the early Jurassic and survived at least until the end of the Mesozoic. They were known to have dominated South America, India and Madagascar but were not so abundant in North America or Asia. Much less is known about their presence in Africa, although there has been several recent discoveries of abelisaurid material in Morocco. Here we add a partially preserved ilium to a growing body of evidence that suggests abelisaurs might also have dominated Africa. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
10. Anatomy of the dinosaur Pampadromaeus barberenai (Saurischia—Sauropodomorpha) from the Late Triassic Santa Maria Formation of southern Brazil.
- Author
-
Langer, Max Cardoso, McPhee, Blair Wayne, Marsola, Júlio César de Almeida, Roberto-da-Silva, Lúcio, and Cabreira, Sérgio Furtado
- Subjects
- *
SAURISCHIA , *TRIASSIC Period , *SKELETON , *ANALYSIS of bones - Abstract
Sauropodomorphs are the most abundant and diverse clade of Triassic dinosaurs, but the taxonomy of their earliest (Carnian) representatives is still poorly understood. One such taxon is Pampadromaeus barberenai, represented by a nearly complete disarticulated skeleton recovered from the upper part of the Santa Maria Formation of Rio Grande do Sul, Brazil. Here, the osteology of Pam. barberenai is fully described for the first time. Detailed comparisons with other Carnian sauropodomorphs reveal a unique anatomy, corroborating its status as a valid species. Potential autapomorphies of Pam. barberenai can be seen in the articulation of the sacral zygapophyses, the length of the pectoral epipodium, the shape of the distal articulation of the femur and the proximal articulation of metatarsal 1. A novel phylogenetic study shows that relationships among the Carnian sauropodomorphs are poorly constrained, possibly because they belong to a “zone of variability”, where homoplasy abounds. Yet, there is some evidence that Pam. barberenai may nest within Saturnaliidae, along with Saturnalia tupiniquim and Chromogisaurus novasi, which represents the sister group to the larger sauropodomorphs, i.e. Bagualosauria. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
11. A new African Titanosaurian Sauropod Dinosaur from the middle Cretaceous Galula Formation (Mtuka Member), Rukwa Rift Basin, Southwestern Tanzania.
- Author
-
Gorscak, Eric and O’Connor, Patrick M.
- Subjects
- *
PALEOBIOGEOGRAPHY , *SKELETON , *COMPARATIVE anatomy , *TEETH , *INCISORS - Abstract
The African terrestrial fossil record has been limited in its contribution to our understanding of both regional and global Cretaceous paleobiogeography, an interval of significant geologic and macroevolutionary change. A common component in Cretaceous African faunas, titanosaurian sauropods diversified into one of the most specious groups of dinosaurs worldwide. Here we describe the new titanosaurian Mnyamawamtuka moyowamkia gen. et sp. nov. from the Mtuka Member of the Galula Formation in southwest Tanzania. The new specimen preserves teeth, elements from all regions of the postcranial axial skeleton, parts of both appendicular girdles, and portions of both limbs including a complete metatarsus. Unique traits of M. moyowamkia include the lack of an interpostzygapophyseal lamina in posterior dorsal vertebrae, pronounced posterolateral expansion of middle caudal centra, and an unusually small sternal plate. Phylogenetic analyses consistently place M. moyowamkia as either a close relative to lithostrotian titanosaurians (e.g., parsimony, uncalibrated Bayesian analyses) or as a lithostrotian and sister taxon to Malawisaurus dixeyi from the nearby Aptian? Dinosaur Beds of Malawi (e.g., tip-dating Bayesian analyses). M. moyowamkia shares a few features with M. dixeyi, including semi-spatulate teeth and a median lamina between the neural canal and interpostzygapophyseal lamina in anterior dorsal vertebrae. Both comparative morphology and phylogenetic analyses support Mnyamawamtuka as a distinct and distant relative to Rukwatitan bisepultus and Shingopana songwensis from the younger Namba Member of the Galula Formation with these results largely congruent with newly constrained ages for the Mtuka Member (Aptian–Cenomanian) and Namba Member (Campanian). Coupled with recent discoveries from the Dahkla Oasis, Egypt (e.g., Mansourasaurus shahinae) and other parts of continental Afro-Arabia, the Tanzania titanosaurians refine perspectives on the development of African terrestrial faunas throughout the Cretaceous—a critical step in understanding non-marine paleobiogeographic patterns of Africa that have remained elusive until the past few years. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
12. The braincase of Malawisaurus dixeyi (Sauropoda: Titanosauria): A 3D reconstruction of the brain endocast and inner ear.
- Author
-
Andrzejewski, Kate A., Polcyn, Michael J., Winkler, Dale A., Gomani Chindebvu, Elizabeth, and Jacobs, Louis L.
- Subjects
- *
SKULL , *SAURISCHIA , *INNER ear , *CANALS , *ENDOCRINE system , *NERVOUS system - Abstract
A braincase of the Cretaceous titanosaurian sauropod Malawisaurus dixeyi, complete except for the olfactory region, was CT scanned and a 3D rendering of the endocast and inner ear was generated. Cranial nerves appear in the same configuration as in other sauropods, including derived features that appear to characterize titanosaurians, specifically, an abducens nerve canal that passes lateral to the pituitary fossa rather than entering it. Furthermore, the hypoglossal nerve exits the skull via a single foramen, consistent with most titanosaurians, while other saurischians, including the basal titanosauriform, Giraffatitan, contain multiple rootlets. The size of the vestibular labyrinth is smaller than in Giraffatitan, but larger than in most derived titanosaurians. Similar to the condition found in Giraffatitan, the anterior semicircular canal is larger than the posterior semicircular canal. This contrasts with more derived titanosaurians that contain similarly sized anterior and posterior semicircular canals, congruent with the interpretation of Malawisaurus as a basal titanosaurian. Measurements of the humerus of Malawisaurus provide a body mass estimate of 4.7 metric tons. Comparison of body mass to radius of the semicircular canals of the vestibular labyrinth reveals that Malawisaurus fits the allometric relationship found in previous studies of extant mammals and Giraffatitan brancai. As in Giraffatitan, the anterior semicircular canal is significantly larger than is predicted by the allometric relationship suggesting greater sensitivity and slower movement of the head in the sagittal plane. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
13. A new baby oviraptorid dinosaur (Dinosauria: Theropoda) from the Upper Cretaceous Nemegt Formation of Mongolia.
- Author
-
Lee, Sungjin, Lee, Yuong-Nam, Chinsamy, Anusuya, Lü, Junchang, Barsbold, Rinchen, and Tsogtbaatar, Khishigjav
- Subjects
- *
DINOSAURS , *CRETACEOUS Period , *REPTILE phylogeny , *REPTILE classification - Abstract
Recent discoveries of new oviraptorosaurs revealed their high diversity from the Cretaceous Period in Asia and North America. Particularly, at the family level, oviraptorids are among the most diverse theropod dinosaurs in the Late Cretaceous of Mongolia and China. A new oviraptorid dinosaur Gobiraptor minutus gen. et sp. nov. from the Upper Cretaceous Nemegt Formation is described here based on a single holotype specimen that includes incomplete cranial and postcranial elements. The most prominent characters of Gobiraptor are its thickened rostrodorsal end of the mandibular symphysis and a rudimentary lingual shelf on each side of the dentary. Each lingual shelf is lined with small occlusal foramina and demarcated by a weakly developed lingual ridge. This mandibular morphology of Gobiraptor is unique among oviraptorids and likely to be linked to a specialized diet that probably included hard materials, such as seeds or bivalves. The osteohistology of the femur of the holotype specimen indicates that the individual was fairly young at the time of its death. Phylogenetic analysis recovers Gobiraptor as a derived oviraptorid close to three taxa from the Ganzhou region in southern China, but rather distantly related to other Nemegt oviraptorids which, as the results of recent studies, are also not closely related to each other. Gobiraptor increases diversity of oviraptorids in the Nemegt Formation and its presence confirms the successful adaptation of oviraptorids to a mesic environment. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
14. Convoluted nasal passages function as efficient heat exchangers in ankylosaurs (Dinosauria: Ornithischia: Thyreophora).
- Author
-
Bourke, Jason M., Porter, Wm. Ruger, and Witmer, Lawrence M.
- Subjects
- *
ANKYLOSAURUS , *RESPIRATORY organ physiology , *HEAT exchangers , *HEAT recovery , *BODY mass index - Abstract
Convoluted nasal passages are an enigmatic hallmark of Ankylosauria. Previous research suggested that these convoluted nasal passages functioned as heat exchangers analogous to the respiratory turbinates of mammals and birds. We tested this hypothesis by performing a computational fluid dynamic analysis on the nasal passages of two ankylosaurs: Panoplosaurus mirus and Euoplocephalus tutus. Our models predicted that Panoplosaurus and Euoplocephalus would have required 833 and 1568 thermal calories, respectively, to warm a single breath of air by 20°C. Heat recovery during exhalation resulted in energy savings of 65% for Panoplosaurus and 84% for Euoplocephalus. Our results fell well within the range of values for heat and water savings observed in extant terrestrial amniotes. We further tested alternate airway reconstructions that removed nasal passage convolutions or reduced nasal vestibule length. Our results revealed that the extensive elaboration observed in the nasal vestibules of ankylosaurs was a viable alternative to respiratory turbinates with regards to air conditioning. Of the two dinosaurs tested, Euoplocephalus repeatedly exhibited a more efficient nasal passage than Panoplosaurus. We suggest that the higher heat loads associated with the larger body mass of Euoplocephalus necessitated these more efficient nasal passages. Our findings further indicate that the evolution of complicated airways in dinosaurs may have been driven by the thermal requirements of maintaining cerebral thermal homeostasis. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
15. Tooth development, histology, and enamel microstructure in Changchunsaurus parvus: Implications for dental evolution in ornithopod dinosaurs.
- Author
-
Chen, Jun, LeBlanc, Aaron R. H., Jin, Liyong, Huang, Timothy, and Reisz, Robert R.
- Subjects
- *
DENTITION , *ORNITHOPODA , *ANIMAL diversity , *ORNITHISCHIA , *TOOTH replantation - Abstract
The great diversity of dinosaurian tooth shapes and sizes, and in particular, the amazing dental complexity in derived ornithischians has attracted a lot of attention. However, the evolution of dental batteries in hadrosaurids and ceratopsids is difficult to understand without a broader comparative framework. Here we describe tooth histology and development in the "middle" Cretaceous ornithischian dinosaur Changchunsaurus parvus, a small herbivore that has been characterized as an early ornithopod, or even as a more basal ornithischian. We use this taxon to show how a "typical" ornithischian dentition develops, copes with wear, and undergoes tooth replacement. Although in most respects the histological properties of their teeth are similar to those of other dinosaurs, we show that, as in other more derived ornithischians, in C. parvus the pulp chamber is not invaded fully by the newly developing replacement tooth until eruption is nearly complete. This allowed C. parvus to maintain an uninterrupted shearing surface along a single tooth row, while undergoing continuous tooth replacement. Our histological sections also show that the replacement foramina on the lingual surfaces of the jaws are likely the entry points for an externally placed dental lamina, a feature found in many other ornithischian dinosaurs. Surprisingly, our histological analysis also revealed the presence of wavy enamel, the phylogenetically earliest occurrence of this type of tissue. This contradicts previous interpretations that this peculiar type of enamel arose in association with more complex hadrosauroid dentitions. In view of its early appearance, we suggest that wavy enamel may have evolved in association with a shearing-type dentition in a roughly symmetrically-enameled crown, although its precise function still remains somewhat of a mystery. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
16. Ontogeny and taxonomy of the hadrosaur (Dinosauria, Ornithopoda) remains from Basturs Poble bonebed (late early Maastrichtian, Tremp Syncline, Spain).
- Author
-
Fondevilla, Víctor, Dalla Vecchia, Fabio Marco, Gaete, Rodrigo, Galobart, Àngel, Moncunill-Solé, Blanca, and Köhler, Meike
- Subjects
- *
DINOSAURS , *ORNITHOPODA , *ZOOLOGICAL specimens , *MUSCULOSKELETAL system , *PALEONTOLOGY - Abstract
The lower Maastrichtian site of Basturs Poble (southern Pyrenees, Spain) is the first hadrosaur bonebed reported from Europe. It is an accumulation of disarticulated lambeosaurine skeletal elements, possibly belonging to Pararhabdodon isonensis. The sample shows high intraspecific morphological variability among many skeletal elements, suggesting the need for caution in choosing characters for phylogenetic analyses. Juvenile to adult individuals are represented in the sample, while hatchling remains are absent. Bone histology reveals that juveniles are over-represented and that the youngest individuals represented by tibia specimens were two years old. Adult individuals, with tibiae 550–600 mm long, were 14–15 years old when they died. However, individual variation in tibia length at skeletal maturity occurs within the sample, so individual maturity cannot be assumed on the basis of bone size alone. The Basturs Poble bonebed occurs within the upper part of the C31r magnetochron. Thus, lambeosaurine hadrosaurids were already present and abundant in the Ibero-Armorica Island at the end of the early Maastrichtian and P. isonensis spans the upper part of the lower Maastrichtian to the upper part of the upper Maastrichtian (upper part of C31r-lower part of C29r). [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
17. Proof of concept study: Testing human volatile organic compounds as tools for age classification of films.
- Author
-
Stönner, C., Edtbauer, A., Derstroff, B., Bourtsoukidis, E., Klüpfel, T., Wicker, J., and Williams, J.
- Subjects
- *
VOLATILE organic compounds , *EMOTIONAL state , *RANDOM forest algorithms , *TIME series analysis , *ISOPRENE , *ATMOSPHERIC chemistry - Abstract
Humans emit numerous volatile organic compounds (VOCs) through breath and skin. The nature and rate of these emissions are affected by various factors including emotional state. Previous measurements of VOCs and CO2 in a cinema have shown that certain chemicals are reproducibly emitted by audiences reacting to events in a particular film. Using data from films with various age classifications, we have studied the relationship between the emission of multiple VOCs and CO2 and the age classifier (0, 6, 12, and 16) with a view to developing a new chemically based and objective film classification method. We apply a random forest model built with time independent features extracted from the time series of every measured compound, and test predictive capability on subsets of all data. It was found that most compounds were not able to predict all age classifiers reliably, likely reflecting the fact that current classification is based on perceived sensibilities to many factors (e.g. incidences of violence, sex, antisocial behaviour, drug use, and bad language) rather than the visceral biological responses expressed in the data. However, promising results were found for isoprene which reliably predicted 0, 6 and 12 age classifiers for a variety of film genres and audience age groups. Therefore, isoprene emission per person might in future be a valuable aid to national classification boards, or even offer an alternative, objective, metric for rating films based on the reactions of large groups of people. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
18. Novel data on aetosaur (Archosauria, Pseudosuchia) osteoderm microanatomy and histology: palaeobiological implications.
- Author
-
Cerda, Ignacio A., Desojo, Julia B., and Scheyer, Torsten M.
- Subjects
- *
ARCHOSAURIA , *ONTOGENY , *HISTOLOGY , *PALEOBIOLOGY , *LIFESTYLES - Abstract
Abstract: One of the most striking features of aetosaurs is the possession of an extensive bony armour composed of dorsal, ventral and appendicular osteoderms. With the purpose of establishing the main histological changes during ontogeny and the degree of histological variation within the armour, we analysed the bone histology of dorsal (paramedian and lateral), ventral and appendicular osteoderms from different taxa from the Late Triassic of South America, including Aetosauroides scagliai, Aetobarbakinoides brasiliensis and Neoaetosauroides engaeus. Histological data support an intramembranous origin for osteoderms. Nevertheless, evidence for metaplastic ossification (i.e. structural fibres) at advanced ontogenetic stages, in at least some elements, is also present. A variant type of parallel fibred bone, which we have named ‘crossed parallel fibred bone’, is characterized for aetosaurs. In this pseudosuchian group, osteoderms exhibit very important microstructural changes during ontogeny, which can be useful for determining ontogenetic stages from isolated elements. Histological data suggest a relatively early onset of sexual maturity among aetosaurs. Microanatomical analysis from different taxa reveal that having high values of compactness is the plesiomorphic condition for Aetosauria. The notably increased compactness of the osteoderms does not appear to be related to size, ontogeny, sex or reproductive status of the individuals. Although a high degree of compactness of osteoderms and other bones has been considered as evidence for an aquatic lifestyle in vertebrates, such an inference contradicts the current concept of a fully terrestrial lifestyle in aetosaurs. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
19. A re-evaluation of the basicranial soft tissues and pneumaticity of the therizinosaurian Nothronychus mckinleyi (Theropoda; Maniraptora).
- Author
-
Smith, David K., Sanders, R. Kent, and Wolfe, Douglas G.
- Subjects
- *
THERIZINOSAURUS , *TISSUES , *MUSCLES , *EMBRYOLOGY , *SKULL base - Abstract
The soft-tissue reconstruction and associated osteology of the North American therizinosaurian Nothronychus mckinleyi is updated. The cranial nerve topology is revised, bringing it more in line with coelurosaurs. The trunk of the trigeminal nerve is very short, with an incompletely intracranial trigeminal ganglion, an ophthalmic branch diverging anteriorly first, with later divergences of the maxillomandibular branches, following typical pathways. The facial nerve has been re-evaluated, resulting in a very typical configuration with an extracranial geniculate ganglion. The single foramen leading to the cochlea probably transmitted the vestibulocochlear nerve, along with some fibers of the facial. This configuration is reduced from the more standard three foramina (vestibular, cochlear, and facial) and may be apomorphic for therizinosaurs. Some alteration is proposed for the dorsiflexive musculature. The insertion point for m. transversospinalis capitis is partially changed to extend onto the parietal, along with a proposed functional difference in the moment arm. The expansion of the basicranial pneumatic system is limited to the paratympanic system, enhancing low frequency sound sensitivity. There is little expansion of the median pharyngeal and subcondylar sinuses. Ossification of the surrounding epithelium may provide some information on the embryology of the theropod skull. It may be associated with a reduced stress field, or the general similarity of the basicranium with anterior cervical vertebrae may reflect activation of a cervical vertebral (Hox) gene regulating ossification of the pneumatic sinuses. This might be a local, selectively neutral, fixed gene in the basicranium reflecting embryological regulation of cervical vertebrae development. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
20. A high-latitude fauna of mid-Mesozoic mammals from Yakutia, Russia.
- Author
-
Averianov, Alexander, Martin, Thomas, Lopatin, Alexey, Skutschas, Pavel, Schellhorn, Rico, Kolosov, Petr, and Vitenko, Dmitry
- Subjects
- *
MESOZOIC Era , *FOSSIL mammals , *GEOLOGICAL time scales , *CRETACEOUS Period - Abstract
The Early Cretaceous (?Berriasian-Barremian) Teete vertebrate locality in Western Yakutia, East Siberia, Russia, has produced mammal remains that are attributed to three taxa: Eleutherodontidae indet. cf. Sineleutherus sp. (Haramiyida; an upper molariform tooth), Khorotherium yakutensis gen. et sp. nov. (Tegotheriidae, Docodonta; maxillary fragment with three molariform teeth and dentary fragment with one molariform tooth), and Sangarotherium aquilonium gen. et sp. nov. (Eutriconodonta incertae sedis; dentary fragment with one erupted molariform tooth and one tooth in crypt). This is the second occurrence of Mesozoic mammals in high latitudes (paleolatitude estimate N 63–70°) of the Northern Hemisphere. In spite of the presumed Early Cretaceous age based on freshwater mollusks, the Teete mammal assemblage has a distinctive Jurassic appearance, being most similar to the Middle-Late Jurassic mammal assemblages known from Siberia, Russia and Xinjiang, China. The smooth transition from Jurassic to Cretaceous biota in Northern Asia is best explained by stable environmental conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
21. Forelimb musculature and osteological correlates in Sauropodomorpha (Dinosauria, Saurischia).
- Author
-
Otero, Alejandro
- Subjects
- *
FORELIMB , *SAUROPODOMORPHA , *ARCHOSAURIA , *REPTILE phylogeny , *REPTILE anatomy - Abstract
This contribution presents the forelimb muscular arrangement of sauropodomorph dinosaurs as inferred by comparisons with living archosaurs (crocodiles and birds) following the Extant Phylogenetic Bracket approach. Forty-one muscles were reconstructed, including lower limb and manus musculature, which prior information available was scarce for sauropodomorphs. A strong emphasis was placed on osteological correlates (such as tubercles, ridges and striae) and comparisons with primitive archosauromorphs are included in order to track these correlates throughout the clade. This should help to elucidate how widespread among other archosaurian groups are these osteological correlates identified in Sauropodomorpha. The ultimate goal of this contribution was to provide an exhaustive guide to muscular identification in fossil archosaurs and to offer solid anatomical bases for future studies based on osteology, myology, functional morphology and systematics. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
22. Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs.
- Author
-
Zhou, Zhonghe, Li, Zhiheng, and Clarke, Julia A.
- Subjects
- *
DINOSAURS , *PTEROSAURIA , *CONVERGENT evolution , *OSTEICHTHYES , *TONGUE - Abstract
The tongue, with fleshy, muscular, and bony components, is an innovation of the earliest land-dwelling vertebrates with key functions in both feeding and respiration. Here, we bring together evidence from preserved hyoid elements from dinosaurs and outgroup archosaurs, including pterosaurs, with enhanced contrast x-ray computed tomography data from extant taxa. Midline ossification is a key component of the origin of an avian hyoid. The elaboration of the avian tongue includes the evolution of multiple novel midline hyoid bones and a larynx suspended caudal to these midline elements. While variable in dentition and skull shape, most bird-line archosaurs show a simple hyoid structure. Bony, or well-mineralized, hyoid structures in dinosaurs show limited modification in response to dietary shifts and across significant changes in body-size. In Dinosauria, at least one such narrow, midline element is variably mineralized in some basal paravian theropods. Only in derived ornithischians, pterosaurs and birds is further significant hyoid elaboration recorded. Furthermore, only in the latter two taxa does the bony tongue structure include elongation of paired hyobranchial elements that have been associated in functional studies with hyolingual mobility. Pterosaurs and enantiornithine birds achieve similar elongation and inferred mobility via elongation of ceratobranchial elements while within ornithurine birds, including living Aves, ossified and separate paired epibranchial elements (caudal to the ceratobranchials) confer an increase in hyobranchial length. The mobile tongues seen in living birds may be present in other flighted archosaurs showing a similar elongation. Shifts from hypercarnivory to more diverse feeding ecologies and diets, with the evolution of novel locomotor strategies like flight, may explain the evolution of more complex tongue function. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
23. An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model.
- Author
-
Jabeen, Safia, Mehmood, Zahid, Mahmood, Toqeer, Saba, Tanzila, Rehman, Amjad, and Mahmood, Muhammad Tariq
- Subjects
- *
IMAGE retrieval , *IMAGE representation , *BAG-of-words model (Computer science) , *ROBUST control , *STATISTICAL reliability - Abstract
For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
24. A giant Late Triassic ichthyosaur from the UK and a reinterpretation of the Aust Cliff ‘dinosaurian’ bones.
- Author
-
Lomax, Dean R., De la Salle, Paul, Massare, Judy A., and Gallois, Ramues
- Subjects
- *
TRIASSIC paleobotany , *DINOSAUR anatomy , *TRIASSIC Period , *ICHTHYOSAURUS , *ICHTHYOSAURIDAE - Abstract
The largest reported ichthyosaurs lived during the Late Triassic (~235–200 million years ago), and isolated, fragmentary bones could be easily mistaken for those of dinosaurs because of their size. We report the discovery of an isolated bone from the lower jaw of a giant ichthyosaur from the latest Triassic of Lilstock, Somerset, UK. It documents that giant ichthyosaurs persisted well into the Rhaetian Stage, and close to the time of the Late Triassic extinction event. This specimen has prompted the reinterpretation of several large, roughly cylindrical bones from the latest Triassic (Rhaetian Stage) Westbury Mudstone Formation from Aust Cliff, Gloucestershire, UK. We argue here that the Aust bones, previously identified as those of dinosaurs or large terrestrial archosaurs, are jaw fragments from giant ichthyosaurs. The Lilstock and Aust specimens might represent the largest ichthyosaurs currently known. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
25. Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary.
- Author
-
Longrich, Nicholas R., Martill, David M., and Andres, Brian
- Subjects
- *
PTEROSAURIA , *CRETACEOUS Period , *PALEOGENE , *MASS extinctions - Abstract
Pterosaurs were the first vertebrates to evolve powered flight and the largest animals to ever take wing. The pterosaurs persisted for over 150 million years before disappearing at the end of the Cretaceous, but the patterns of and processes driving their extinction remain unclear. Only a single family, Azhdarchidae, is definitively known from the late Maastrichtian, suggesting a gradual decline in diversity in the Late Cretaceous, with the Cretaceous–Paleogene (K-Pg) extinction eliminating a few late-surviving species. However, this apparent pattern may simply reflect poor sampling of fossils. Here, we describe a diverse pterosaur assemblage from the late Maastrichtian of Morocco that includes not only Azhdarchidae but the youngest known Pteranodontidae and Nyctosauridae. With 3 families and at least 7 species present, the assemblage represents the most diverse known Late Cretaceous pterosaur assemblage and dramatically increases the diversity of Maastrichtian pterosaurs. At least 3 families—Pteranodontidae, Nyctosauridae, and Azhdarchidae—persisted into the late Maastrichtian. Late Maastrichtian pterosaurs show increased niche occupation relative to earlier, Santonian-Campanian faunas and successfully outcompeted birds at large sizes. These patterns suggest an abrupt mass extinction of pterosaurs at the K-Pg boundary. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
26. Formal comment on: Myhrvold (2016) Dinosaur metabolism and the allometry of maximum growth rate. PLoS ONE; 11(11): e0163205.
- Author
-
Griebeler, Eva Maria and Werner, Jan
- Subjects
- *
DINOSAURS , *ALLOMETRY , *METABOLISM , *BODY temperature regulation , *COLD-blooded animals , *WARM-blooded animals - Abstract
In his 2016 paper, Myhrvold criticized ours from 2014 on maximum growth rates (Gmax, maximum gain in body mass observed within a time unit throughout an individual’s ontogeny) and thermoregulation strategies (ectothermy, endothermy) of 17 dinosaurs. In our paper, we showed that Gmax values of similar-sized extant ectothermic and endothermic vertebrates overlap. This strongly questions a correct assignment of a thermoregulation strategy to a dinosaur only based on its Gmax and (adult) body mass (M). Contrary, Gmax separated similar-sized extant reptiles and birds (Sauropsida) and Gmax values of our studied dinosaurs were similar to those seen in extant similar-sized (if necessary scaled-up) fast growing ectothermic reptiles. Myhrvold examined two hypotheses (H1 and H2) regarding our study. However, we did neither infer dinosaurian thermoregulation strategies from group-wide averages (H1) nor were our results based on that Gmax and metabolic rate (MR) are related (H2). In order to assess whether single dinosaurian Gmax values fit to those of extant endotherms (birds) or of ectotherms (reptiles), we already used a method suggested by Myhrvold to avoid H1, and we only discussed pros and cons of a relation between Gmax and MR and did not apply it (H2). We appreciate Myhrvold’s efforts in eliminating the correlation between Gmax and M in order to statistically improve vertebrate scaling regressions on maximum gain in body mass. However, we show here that his mass-specific maximum growth rate (kC) replacing Gmax (= MkC) does not model the expected higher mass gain in larger than in smaller species for any set of species. We also comment on, why we considered extant reptiles and birds as reference models for extinct dinosaurs and why we used phylogenetically-informed regression analysis throughout our study. Finally, we question several arguments given in Myhrvold in order to support his results. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
27. Response to formal comment on Myhrvold (2016) submitted by Griebeler and Werner (2017).
- Author
-
Myhrvold, Nathan P.
- Subjects
- *
WARM-blooded animals , *COLD-blooded animals , *PHYLOGENY , *DINOSAURS , *ALLOMETRY - Abstract
Griebeler and Werner offer a formal comment on Myhrvold, 2016 defending the conclusions of Werner and Griebeler, 2014. Although the comment criticizes several aspects of methodology in Myhrvold, 2016, all three papers concur on a key conclusion: the metabolism of extant endotherms and ectotherms cannot be reliably classified using growth-rate allometry, because the growth rates of extant endotherms and ectotherms overlap. A key point of disagreement is that the 2014 paper concluded that despite this general case, one can nevertheless classify dinosaurs as ectotherms from their growth rate allometry. The 2014 conclusion is based on two factors: the assertion (made without any supporting arguments) that the comparison with dinosaurs must be restricted only to extant sauropsids, ignoring other vertebrate groups, and that extant sauropsid endotherm and ectotherm growth rates in a data set studied in the 2014 work do not overlap. The Griebeler and Werner formal comment presents their first arguments in support of the restriction proposition. In this response I show that this restriction is unsupported by established principles of phylogenetic comparison. In addition, I show that the data set studied in their 2014 work does show overlap, and that this is visible in one of its figures. I explain how either point effectively invalidates the conclusion of their 2014 paper. I also address the other methodological criticisms of Myhrvold 2016, and find them unsupported. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
28. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs.
- Author
-
Bishop, P. J., Graham, D. F., Lamas, L. P., Hutchinson, J. R., Rubenson, J., Hancock, J. A., Wilson, R. S., Hocknull, S. A., Barrett, R. S., Lloyd, D. G., and Clemente, C. J.
- Subjects
- *
DINOSAURS , *SAURISCHIA , *KINEMATICS , *EXTRAPOLATION , *GROUND reaction forces (Biomechanics) - Abstract
How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete ‘walking’ and ‘running’ gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79–93% of the observed variation in kinematics and 69–83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
29. Synchrotron microtomography of a Nothosaurus marchicus skull informs on nothosaurian physiology and neurosensory adaptations in early Sauropterygia.
- Author
-
Voeten, Dennis F. A. E., Reich, Tobias, Araújo, Ricardo, and Scheyer, Torsten M.
- Subjects
- *
SAUROPTERYGIA , *NOTHOSAURUS , *SENSORY neurons , *MARINE ecology , *TRIASSIC Period , *BIOLOGICAL adaptation - Abstract
Nothosaurs form a subclade of the secondarily marine Sauropterygia that was well represented in late Early to early Late Triassic marine ecosystems. Here we present and discuss the internal skull anatomy of the small piscivorous nothosaur Nothosaurus marchicus from coastal to shallow marine Lower Muschelkalk deposits (Anisian) of Winterswijk, The Netherlands, which represents the oldest sauropterygian endocast visualized to date. The cranial endocast is only partially encapsulated by ossified braincase elements. Cranial flattening and lateral constriction by hypertrophied temporal musculature grant the brain a straight, tubular geometry that lacks particularly well-developed cerebral lobes but does potentially involve distinguishable optic lobes, suggesting vision may have represented an important sense during life. Despite large orbit size, the circuitous muscular pathway linking the basisphenoidal and orbital regions indicates poor oculomotor performance. This suggests a rather fixed ocular orientation, although eye placement and neck manoeuvrability could have enabled binocular if not stereoscopic vision. The proportionally large dorsal projection of the braincase endocast towards the well-developed pineal foramen advocates substantial dependence on the corresponding pineal system in vivo. Structures corroborating keen olfactory or acoustic senses were not identified. The likely atrophied vomeronasal organ argues against the presence of a forked tongue in Nothosaurus, and the relative positioning of external and internal nares contrasts respiratory configurations proposed for pistosauroid sauropterygians. The antorbital domain furthermore accommodates a putative rostral sensory plexus and pronounced lateral nasal glands that were likely exapted as salt glands. Previously proposed nothosaurian ‘foramina eustachii’ arose from architectural constraints on braincase development rather than representing functional foramina. Several modifications to brain shape and accessory organs were achieved through heterochronic development of the cranium, particularly the braincase. In summary, the cranium of Nothosaurus marchicus reflects important physiological and neurosensory adaptations that enabled the group’s explosive invasion of shallow marine habitats in the late Early Triassic. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
30. LIDAR-based characterization and conservation of the first theropod dinosaur trackways from Arkansas, USA.
- Author
-
Platt, Brian F., Suarez, Celina A., Boss, Stephen K., Williamson, Malcolm, Cothren, Jackson, and Kvamme, Jo Ann C.
- Subjects
- *
DINOSAURS , *ANTHROPOMETRY , *LIDAR , *SAURISCHIA - Abstract
LIDAR-based analyses of the first theropod dinosaur trackways known from the state of Arkansas, USA are reported. The trackways were found on a limestone bedding plane in the Albian De Queen Formation in an active gypsum quarry. Because limited access precluded thorough field study, fieldwork focused on preserving the entire site digitally with ground-based LIDAR, and detailed measurements were later taken digitally from point cloud data. The site contains eight tridactyl trackways associated with sauropod trackways and numerous isolated tracks. Although there appear to be two different tridactyl morphotypes, we show that the tracks are all likely from a single species of trackmaker. We apply a simple method of estimating substrate consistency by comparing the differences between true track dimensions and apparent track dimensions. The tridactyl tracks at the southern end of the site are preserved with significantly greater differences in true vs. apparent dimensions and are shallower than the rest of the tridactyl tracks at the site, which we interpret as the result of outward expansion of the soft tissues of the foot upon contact with a firm substrate. We interpret the firm substrate as having high bulk density and high shear strength, which also explain associated manus-only sauropod tracks. We show that the tridactyl tracks are likely from theropod trackmakers and that footprint lengths, trackway paces, stride lengths, and pace angulations of the De Queen trackways are statistically indistinguishable from equivalent measurements of theropod trackways in the Glen Rose Formation. The Glen Rose tracks are attributed to the large-bodied theropod, Acrocanthosaurus and we likewise attribute the De Queen tracks to Acrocanthosaurus, which is known from skeletal remains in temporally equivalent units and from the mine itself. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
31. The osteoderm microstructure in doswelliids and proterochampsids and its implications for palaeobiology of stem archosaurs.
- Author
-
PONCE, DENIS A., CERDA, IGNACIO A., DESOJO, JULIA B., and NESBITT, STERLING J.
- Subjects
- *
ARCHOSAURIA , *PALEOBIOLOGY , *HISTOGENESIS , *MICROSTRUCTURE , *COMPACT bone - Abstract
Osteoderms are common in most archosauriform lineages, including basal forms, such as doswelliids and proterochampsids. In this survey, osteoderms of the doswelliids Doswellia kaltenbachi and Vancleavea campi, and proterochampsid Chanaresuchus bonapartei are examined to infer their palaeobiology, such as histogenesis, age estimation at death, development of external sculpturing, and palaeoecology. Doswelliid osteoderms have a trilaminar structure: two cortices of compact bone (external and basal) that enclose an internal core of cancellous bone. In contrast, Chanaresuchus bonapartei osteoderms are composed of entirely compact bone. The external ornamentation of Doswellia kaltenbachi is primarily formed and maintained by preferential bone growth. Conversely, a complex pattern of resorption and redeposition process is inferred in Archeopelta arborensis and Tarjadia ruthae. Vancleavea campi exhibits the highest degree of variation among doswelliids in its histogenesis (metaplasia), density and arrangement of vascularization and lack of sculpturing. The relatively high degree of compactness in the osteoderms of all the examined taxa is congruent with an aquatic or semi-aquatic lifestyle. In general, the osteoderm histology of doswelliids more closely resembles that of phytosaurs and pseudosuchians than that of proterochampsids. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
32. Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America.
- Author
-
Fowler, Denver Warwick
- Subjects
- *
GEOLOGICAL time scales , *PALEONTOLOGICAL modeling , *DINOSAUR physiology , *GENETIC speciation , *DECAY constants - Abstract
Interbasinal stratigraphic correlation provides the foundation for all consequent continental-scale geological and paleontological analyses. Correlation requires synthesis of lithostratigraphic, biostratigraphic and geochronologic data, and must be periodically updated to accord with advances in dating techniques, changing standards for radiometric dates, new stratigraphic concepts, hypotheses, fossil specimens, and field data. Outdated or incorrect correlation exposes geological and paleontological analyses to potential error. The current work presents a high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America, combining published chronostratigraphic, lithostratigraphic, and biostratigraphic data. 40Ar / 39Ar radiometric dates are newly recalibrated to both current standard and decay constant pairings. Revisions to the stratigraphic placement of most units are slight, but important changes are made to the proposed correlations of the Aguja and Javelina formations, Texas, and recalibration corrections in particular affect the relative age positions of the Belly River Group, Alberta; Judith River Formation, Montana; Kaiparowits Formation, Utah; and Fruitland and Kirtland formations, New Mexico. The stratigraphic ranges of selected clades of dinosaur species are plotted on the chronostratigraphic framework, with some clades comprising short-duration species that do not overlap stratigraphically with preceding or succeeding forms. This is the expected pattern that is produced by an anagenetic mode of evolution, suggesting that true branching (speciation) events were rare and may have geographic significance. The recent hypothesis of intracontinental latitudinal provinciality of dinosaurs is shown to be affected by previous stratigraphic miscorrelation. Rapid stepwise acquisition of display characters in many dinosaur clades, in particular chasmosaurine ceratopsids, suggests that they may be useful for high resolution biostratigraphy. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
33. Spinosaur taxonomy and evolution of craniodental features: Evidence from Brazil.
- Author
-
Sales, Marcos A. F. and Schultz, Cesar L.
- Subjects
- *
BIOLOGICAL specimens , *CLADISTIC analysis , *SPINOSAURIDAE , *BIOLOGICAL classification , *PALEONTOLOGY - Abstract
Fossil sites from Brazil have yielded specimens of spinosaurid theropods, among which the most informative include the cranial remains of Irritator, Angaturama, and Oxalaia. In this work some of their craniodental features are reinterpreted, providing new data for taxonomic and evolutionary issues concerning this particular clade of dinosaurs. The mesial-most tooth of the left maxilla of the holotype of Irritator is regarded as representing the third tooth position, which is also preserved in the holotype of Angaturama. Thus, both specimens cannot belong to the same individual, contrary to previous assumptions, although they could have been the same taxon. In addition, the position of the external nares of Irritator is more comparable to those of Baryonyx and Suchomimus instead of other spinosaurine spinosaurids. In fact, with regards to some craniodental features, Brazilian taxa represent intermediate conditions between Baryonychinae and Spinosaurinae. Such a scenario is corroborated by our cladistic results, which also leave open the possibility of the former subfamily being non-monophyletic. Furthermore, the differences between spinosaurids regarding the position and size of the external nares might be related to distinct feeding habits and degrees of reliance on olfaction. Other issues concerning the evolution and taxonomy of Spinosauridae require descriptions of additional material for their clarification. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
34. Apparent sixth sense in theropod evolution: The making of a Cretaceous weathervane.
- Author
-
Rothschild, Bruce M. and Naples, Virginia
- Subjects
- *
SAURISCHIA , *CRETACEOUS Period , *WEATHER vanes , *POTENTIAL functions , *BIFURCATION theory - Abstract
Objective: Two separate and distinctive skills are necessary to find prey: Detection of its presence and determination of its location. Surface microscopy of the dentary of albertosaurines revealed a previously undescribed sensory modification, as will be described here. While dentary “foramina” were previously thought to contain tactile sensory organs, the potential function of this theropod modification as a unique localizing system is explored in this study. Method: Dentary surface perforations were examined by surface epi-illumination microscopy in tyrannosaurine and albertosaurine dinosaurs to characterize their anatomy. Fish lateral lines were examined as potentially comparable structures. Result: In contrast to the subsurface vascular bifurcation noted in tyrannosaurines (which lack a lateral dentary surface groove), the area subjacent to the apertures in albertosaurine grooves has the appearance of an expanded chamber. That appearance seemed to be indistinguishable from the lateral line of fish. Conclusion: Dentary groove apertures in certain tyrannosaurid lines (specifically albertosaurines) not only have a unique appearance, but one with significant functional and behavior implications. The appearance of the perforations in the dentary groove of albertosaurines mirrors that previously noted only with specialized neurologic structures accommodating derived sensory functions, as seen in the lateral line of fish. The possibility that this specialized morphology could also represent a unique function in albertosaurine theropods for interacting with the environment or facilitating prey acquisition cannot be ignored. It is suggested that these expanded chambers function in perceiving and aligning the body relative to the direction of wind, perhaps a Cretaceous analogue of the contemporary midwestern weathervane. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
35. The first megatheropod tracks from the Lower Jurassic upper Elliot Formation, Karoo Basin, Lesotho.
- Author
-
Sciscio, L., Bordy, E. M., Abrahams, M., Knoll, F., and McPhee, B. W.
- Subjects
- *
CRETACEOUS Period , *FOSSILS , *CLIMACTICHNITES , *PALEONTOLOGY , *MICROPALEONTOLOGY - Abstract
A palaeosurface with one megatheropod trackway and several theropod tracks and trackways from the Lower Jurassic upper Elliot Formation (Stormberg Group, Karoo Supergroup) in western Lesotho is described. The majority of the theropod tracks are referable to either Eubrontes or Kayentapus based on their morphological characteristics. The larger megatheropod tracks are 57 cm long and have no Southern Hemisphere equivalent. Morphologically, they are more similar to the Early Jurassic Kayentapus, as well as the much younger Upper Cretaceous ichnogenus Irenesauripus, than to other contemporaneous ichnogenera in southern Africa. Herein they have been placed within the ichnogenus Kayentapus and described as a new ichnospecies (Kayentapus ambrokholohali). The tracks are preserved on ripple marked, very fine-grained sandstone of the Lower Jurassic upper Elliot Formation, and thus were made after the end-Triassic mass extinction event (ETE). This new megatheropod trackway site marks the first occurrence of very large carnivorous dinosaurs (estimated body length >8–9 meters) in the Early Jurassic of southern Gondwana, an evolutionary strategy that was repeatedly pursued and amplified in the following ~135 million years, until the next major biotic crisis at the end-Cretaceous. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
36. The oldest record of Alvarezsauridae (Dinosauria: Theropoda) in the Northern Hemisphere.
- Author
-
Averianov, Alexander and Sues, Hans-Dieter
- Subjects
- *
ALVAREZSAURIDAE , *SAURISCHIA , *PHALANGES , *BONES , *FOSSILS - Abstract
Procoelous caudal vertebrae, a carpometacarpus with a hypertrophied metacarpal II, and robust proximal and ungual phalanges of manual digit II of a small theropod dinosaur from the Upper Cretaceous (Turonian) Bissekty Formation at Dzharakuduk, Uzbekistan, show unequivocal synapomorphies of the clade Alvarezsauridae and thus are referred to it. The caudal vertebrae have a unique longitudinal canal within the neural arch. The carpometacarpus, with metacarpal III occupying about one third of the width of the carpometacarpus, shows the most plesiomorphic stage of the evolution of the forelimb among known alvarezsaurids. The proximal phalanx of manual digit II differs from the corresponding bone in Parvicursorinae in having a less asymmetrical proximal articular surface without a dorsal process and short ventral ridges. The ungual phalanx of manual digit II has laterally open ventral foramina. The Bissekty alvarezsaurid possibly represents a basal parvicursorine and is the stratigraphically oldest known alvarezsaurid in Asia known to date. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
37. The toothless pterosaur Jidapterus edentus (Pterodactyloidea: Azhdarchoidea) from the Early Cretaceous Jehol Biota and its paleoecological implications.
- Author
-
Wu, Wen-Hao, Zhou, Chang-Fu, and Andres, Brian
- Subjects
- *
PTERODACTYLS , *CRETACEOUS paleoecology , *REPTILE diversity , *REPTILE evolution , *REPTILE classification - Abstract
Background: In the Early Cretaceous Jehol Biota, the toothless pterosaurs flourished with the chaoyangopterids and tapejarids playing a key role in understanding the early diversity and evolution of the Azhdarchoidea. Unlike the more diverse tapejarids, the rarer chaoyangopterids are characterized by a long and low rostrum, supporting a close relationship with the huge azhdarchids. Unfortunately, our knowledge is still limited in the osteology, paleoecology, and taxonomy of the Chaoyangopteridae. As one of the best preserved skeletons, the type and only specimen of Jidapterus edentus provides an opportunity to understand the morphology and paleoecology of the chaoyangopterids. Results: Our study of the osteology of Jidapterus edentus reveals valuable information about the morphology of the Chaoyangopteridae such as a rostrum with a curved dorsal profile, high Rostral Index (RI), larger angle between the dorsal and postorbital processes of the jugal, sequentially shorter fourth to seventh cervical vertebrae, sternum with a plate wider than long, contact of the metacarpal I with the distal syncarpal, pneumatic foramen on first wing phalanx, hatchet-like postacetabular process with unconstricted neck and small dorsal process, distinctly concave anterior margin of pubis, subrectangular pubic plate with nearly parallel anterior and posterior margins, longer proximal phalanges of pedal digits III and IV, as well as reduced and less curved pedal unguals. These features further support the validity of Jidapterus edentus as a distinct species and the close relationship of the chaoyangopterids with the azhdarchids. Paleoecologically, the chaoyangopterids are probably like the azhdarchids, more terrestrial than the contemporaneous and putatively arboreal tapejarids, which may have been limited to the forest-dominated ecosystem of the Jehol Biota. Discussion: The osteology of Jidapterus edentus further supports the close relationship of the Chaoyangopteridae with the Azhdarchidae in sharing a high RI value and reduced and mildly-curved pedal unguals, and it also implies a possible paleoecological similarity in their terrestrial capability. Combined with the putatively arboreal and herbivorous tapejarids, this distinct lifestyle of the chaoyangopterids provides new insights into the diversity of pterosaurs in the ecosystem of the Jehol Biota. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
38. Megalosauripus transjuranicus ichnosp. nov. A new Late Jurassic theropod ichnotaxon from NW Switzerland and implications for tridactyl dinosaur ichnology and ichnotaxomy.
- Author
-
Razzolini, Novella L., Belvedere, Matteo, Marty, Daniel, Paratte, Géraldine, Lovis, Christel, Cattin, Marielle, and Meyer, Christian A.
- Subjects
- *
SAURISCHIA , *JURASSIC Period , *TAXONOMY , *ICHNOLOGY , *DINOSAUR tracks , *GEOLOGY - Abstract
A new ichnospecies of a large theropod dinosaur, Megalosauripus transjuranicus, is described from the Reuchenette Formation (Early–Late Kimmeridgian, Late Jurassic) of NW Switzerland. It is based on very well-preserved and morphologically-distinct tracks (impressions) and several trackways, including different preservational types from different tracksites and horizons. All trackways were excavated along federal Highway A16 near Courtedoux (Canton Jura) and systematically documented in the field including orthophotos and laserscans. The best-preserved tracks were recovered and additional tracks were casted. Megalosauripus transjuranicus is characterized by tridactyl tracks with clear claw and digital pad impressions, and notably an exceptionally large and round first phalangeal pad on the fourth digit (PIV1) that is connected to digit IV and forms the round heel area. Due to this combination of features, M. transjuranicus clearly is of theropod (and not ornithopod) origin. M. transjuranicus is compared to other Megalosauripus tracks and similar ichnotaxa and other unassigned tracks from the Early Jurassic to Early Cretaceous. It is clearly different from other ichnogenera assigned to large theropods such as Eubrontes–Grallator from the Late Triassic and Early Jurassic or Megalosauripus–Megalosauropus–Bueckeburgichnus and Therangospodus tracks from the Late Jurassic and Early Cretaceous. A second tridactyl morphotype (called Morphotype II) is different from Megalosauripus transjuranicus in being subsymmetric, longer than wide (sometimes almost as wide as long), with blunt toe impressions and no evidence for discrete phalangeal pad and claw marks. Some Morphotype II tracks are found in trackways that are assigned to M. transjuranicus, to M.? transjuranicus or M. cf. transjuranicus indicating that some Morphotype II tracks are intra-trackway preservational variants of a morphological continuum of Megalosauripus transjuranicus. On the other hand, several up to 40 steps long trackways very consistently present Morphotype II features (notably blunt digits) and do not exhibit any of the features that are typical for Megalosauripus (notably phalangeal pads). Therefore, it is not very likely that these tracks are preservational variants of Megalosauripus transjuranicus or Megalosauripus isp. These trackways are interpreted to have been left by an ornithopod dinosaur. The high frequency of large theropod tracks in tidal-flat deposits of the Jura carbonate platform, associated on single ichnoassemblages with minute to medium-sized tridactyl and tiny to large sauropod tracks has important implications for the dinosaur community and for paleoenvironmental and paleogeographical reconstructions. As with most other known occurrences of Megalosauripus tracks, M. transjuranicus is found in coastal settings, which may reflect the preference of their theropod trackmakers for expanded carbonate flats where food was abundant. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
39. A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: Implications for the paleobiology of Rebbachisauridae.
- Author
-
IBIRICU, LUCIO M., LAMANNA, MATTHEW C., MARTÍNEZ, RUBÉN D. F., CASAL, GABRIEL A., CERDA, IGNACIO A., MARTÍNEZ, GASTÓN, and SALGADO, LEONARDO
- Subjects
- *
SAURISCHIA , *PALEOBIOLOGY , *ARCHOSAURIA , *DINOSAURS , *CRETACEOUS Period - Abstract
In dinosaurs and other archosaurs, the presence of foramina connected with internal chambers in axial and appendicular bones is regarded as a robust indicator of postcranial skeletal pneumaticity (PSP). Here we analyze PSP and its paleobiological implications in rebbachisaurid diplodocoid sauropod dinosaurs based primarily on the dorsal vertebrae of Katepensaurus goicoecheai, a rebbachisaurid from the Cenomanian-Turonian (Upper Cretaceous) Bajo Barreal Formation of Patagonia, Argentina. We document a complex of interconnected pneumatic foramina and internal chambers within the dorsal vertebral transverse processes of Katepensaurus. Collectively, these structures constitute a form of PSP that has not previously been observed in sauropods, though it is closely comparable to morphologies seen in selected birds and non-avian theropods. Parts of the skeletons of Katepensaurus and other rebbachisaurid taxa such as Amazonsaurus maranhensis and Tataouinea hannibalis exhibit an elevated degree of pneumaticity relative to the conditions in many other sauropods. We interpret this extensive PSP as an adaptation for lowering the density of the skeleton, and tentatively propose that this reduced skeletal density may also have decreased the muscle energy required to move the body and the heat generated in so doing. Given that several rebbachisaurids inhabited tropical to subtropical paleolatitudes during the extreme warmth of the mid-Cretaceous, increased PSP may have better enabled these sauropods to cope with extraordinarily high temperatures. Extensive skeletal pneumaticity may have been an important innovation in Rebbachisauridae, and perhaps also in saltasaurine titanosaurs, which evolved an even greater degree of PSP. This may in turn have contributed to the evolutionary success of rebbachisaurids, which were the only diplodocoids to survive into the Late Cretaceous. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
40. Soft bilateral filtering volumetric shadows using cube shadow maps.
- Author
-
Ali, Hatam H., Sunar, Mohd Shahrizal, and Kolivand, Hoshang
- Subjects
- *
COMPUTER graphics , *SHADES & shadows in art , *LIGHT scattering , *INTERPOLATION , *INTERACTIVE computer graphics , *REAL-time rendering (Computer graphics) - Abstract
Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
41. Volume of the crocodilian brain and endocast during ontogeny.
- Author
-
Jirak, Daniel and Janacek, Jiri
- Subjects
- *
BRAIN , *ONTOGENY , *VERTEBRATES , *MORPHOLOGY , *CROCODILIANS , *EMBRYOS , *PROSENCEPHALON - Abstract
Understanding complex situations and planning difficult actions require a brain of appropriate size. Animal encephalisation provides an indirect information about these abilities. The brain is entirely composed of soft tissue and, as such, rarely fossilises. As a consequence, the brain proportions and morphology of some extinct vertebrates are usually only inferred from their neurocranial endocasts. However, because the morphological configuration of the brain is not fully reflected in the endocast, knowledge of the brain/endocast relationship is essential (especially the ratio of brain volume to endocast volume or the equivalent proportion of interstitial tissue) for studying the endocasts of extinct animals. Here we assess the encephalic volume and structure of modern crocodilians. The results we obtained using ex vivo magnetic resonance imaging reveal how the endoneurocranial cavity and brain compartments of crocodilians change configuration during ontogeny. We conclude that the endocasts of adult crocodilians are elongated and expanded while their brains are more linearly organised. The highest proportion of brain tissue to endocast volume is in the prosencephalon at over 50% in all but the largest animals, whereas the proportion in other brain segments is under 50% in all but the smallest animals and embryos. Our results may enrich the field of palaeontological study by offering more precise phylogenetic interpretations of the neuroanatomic characteristics of extinct vertebrates at various ontogenetic stages. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
42. Anatomy, taphonomy, and phylogenetic implications of a new specimen of Eolambia caroljonesa (Dinosauria: Ornithopoda) from the Cedar Mountain Formation, Utah, USA.
- Author
-
McDonald, Andrew T., Gates, Terry A., Zanno, Lindsay E., and Makovicky, Peter J.
- Subjects
- *
DINOSAURS , *HISTOLOGY , *PALEONTOLOGY , *BIOLOGICAL evolution , *GLACIAL crevasses - Abstract
Background: Eolambia caroljonesa is the most abundant dinosaur in the lower Cenomanian Mussentuchit Member of the Cedar Mountain Formation of Utah, and one of the most completely known non-hadrosaurid iguanodontians from North America. In addition to the large holotype and paratype partial skulls, copious remains of skeletally immature individuals, including three bonebeds, have been referred to E. caroljonesa. Nevertheless, aspects of the postcranial anatomy of this taxon, particularly the pelvic girdle, have remained ambiguous due to the lack of associated postcranial material of larger, more mature individuals. Methodology/Principal findings: Here we describe a recently discovered associated partial postcranial skeleton of a large Eolambia caroljonesa. This specimen, FMNH PR 3847, provides new anatomical data regarding the vertebral column and pelvic girdle, supplementing previous diagnoses and descriptions of E. caroljonesa. A new phylogenetic analysis incorporating information from FMNH PR 3847 places E. caroljonesa as a basal hadrosauromorph closely related to Protohadros byrdi from the Cenomanian Woodbine Formation of Texas. Histological analysis of FMNH PR 3847 reveals that it represents a subadult individual eight to nine years of age. Taphonomic analysis indicates that FMNH PR 3847 was preserved in a crevasse splay deposit, along with an unusual abundance of small crocodylomorph material. Conclusions/Significance: FMNH PR 3847 provides a wealth of new morphological data, adding to the anatomical and systematic characterization of Eolambia caroljonesa, and histological data, revealing new information on growth history in a basal hadrosauromorph. Taphonomic characterization of FMNH PR 3847 and associated vertebrate material will allow comparison with other vertebrate localities in the Mussentuchit Member of the Cedar Mountain Formation. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
43. Supplementary cranial description of the types of Edmontosaurus regalis (Ornithischia: Hadrosauridae), with comments on the phylogenetics and biogeography of Hadrosaurinae.
- Author
-
Xing, Hai, Mallon, Jordan C., and Currie, Margaret L.
- Subjects
- *
EDMONTOSAURUS , *BIOGEOGRAPHY , *HADROSAURIDAE , *GEOGRAPHY , *PHYLOGENY - Abstract
The cranial anatomy of the flat-skulled hadrosaurine Edmontosaurus regalis (Ornithischia: Hadrosauridae) is extensively described here, based on the holotype and paratype collected from the middle part of the Horseshoe Canyon Formation in southern Alberta. Focus is given to previously undocumented features of ontogenetic and phylogenetic importance. This description facilitates overall osteological comparisons between E. regalis and other hadrosaurids (especially E. annectens), and revises the diagnosis of E. regalis, to which a new autapomorphy (the dorsal half of the jugal anterior process bearing a sharp posterolateral projection into the orbit) is added. We consider the recently named Ugrunaaluk kuukpikensis from the upper Campanian/lower Maastrichtian of Alaska a nomen dubium, and conservatively regard the Alaskan material as belonging to Edmontosaurus sp.. A phylogenetic analysis of Hadrosauroidea using maximum parsimony further corroborates the sister-taxon relationship between E. regalis and E. annectens. In the strict consensus tree, Hadrosaurus foulkii occurs firmly within the clade comprising all non-lambeosaurine hadrosaurids, supporting the taxonomic scheme that divides Hadrosauridae into Hadrosaurinae and Lambeosaurinae. Within Edmontosaurini, Kerberosaurus is posited as the sister taxon to the clade of Shantungosaurus + Edmontosaurus. The biogeographic reconstruction of Hadrosaurinae in light of the time-calibrated cladogram and probability calculation of ancestral areas for all internal nodes reveals a significantly high probability for the North American origin of the clade. However, the Laramidia–Appalachia dispersals around the Santonian–Campanian boundary, inferred from the biogeographic scenario for the North American origin of Hadrosaurinae, are in conflict with currently accepted paleogeographic models. By contrast, the Asian origin of Hadrosaurinae with its relatively low probability resulting from the biogeographic analysis is worth seriously considering, despite the lack of fossil material from the Santonian and lower Campanian of Asia. Extra fossil collecting in appropriate geographic locations and stratigraphic intervals of Asia and Europe will help to clarify the biogeographic dynamics of hadrosaurine dinosaurs in the near future. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
44. Two new ootaxa from the late Jurassic: The oldest record of crocodylomorph eggs, from the Lourinhã Formation, Portugal.
- Author
-
Russo, João, Mateus, Octávio, Marzola, Marco, and Balbino, Ausenda
- Subjects
- *
DINOSAUR eggs , *JURASSIC Period , *EGGSHELLS , *VERTEBRATE embryology , *SAURISCHIA - Abstract
The Late Jurassic Lourinhã Formation is known for its abundant remains of dinosaurs, crocodylomorphs and other vertebrates. Among this record are nine localities that have produced either dinosaur embryos, eggs or eggshell fragments. Herein, we describe and identify the first crocodiloid morphotype eggs and eggshells from the Lourinhã Formation, from five occurrences. One clutch from Cambelas, composed of 13 eggs, eggshell fragments from Casal da Rola and Peralta, one crushed egg and eggshells from Paimogo North, and four crushed eggs as well as eggshell fragments from Paimogo South. We observed and confirmed diagnostic morphological characters for crocodiloid eggshells and which are consistent with a crocodylomorph affinity, such as the ellipsoidal shape, wedge-shaped shell units, triangular extinction under cross-polarized light, and tabular ultrastructure. This material is distinctive enough to propose two new ootaxa within the oofamily Krokolithidae, Suchoolithus portucalensis, oogen. and oosp. nov., for the material from Cambelas, the most complete clutch known for crocodiloid eggs, and Krokolithes dinophilus, oosp. nov., for the remaining material. These are the oldest crocodylomorph eggs known, extending the fossil record for this group to the Late Jurassic. Furthermore, except for the clutch from Cambelas, the material was found with theropod eggs and nests, in the other four occurrences, which seem to suggest some form of biological relationship, still unclear at this point. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
45. Empirical and Bayesian approaches to fossil-only divergence times: A study across three reptile clades.
- Author
-
Turner, Alan H., Pritchard, Adam C., and Matzke, Nicholas J.
- Subjects
- *
FOSSILS , *EMPIRICAL research , *BAYESIAN analysis , *MOLECULAR biology , *PALEONTOLOGY - Abstract
Estimating divergence times on phylogenies is critical in paleontological and neontological studies. Chronostratigraphically-constrained fossils are the only direct evidence of absolute timing of species divergence. Strict temporal calibration of fossil-only phylogenies provides minimum divergence estimates, and various methods have been proposed to estimate divergences beyond these minimum values. We explore the utility of simultaneous estimation of tree topology and divergence times using BEAST tip-dating on datasets consisting only of fossils by using relaxed morphological clocks and birth-death tree priors that include serial sampling (BDSS) at a constant rate through time. We compare BEAST results to those from the traditional maximum parsimony (MP) and undated Bayesian inference (BI) methods. Three overlapping datasets were used that span 250 million years of archosauromorph evolution leading to crocodylians. The first dataset focuses on early Sauria (31 taxa, 240 chars.), the second on early Archosauria (76 taxa, 400 chars.) and the third on Crocodyliformes (101 taxa, 340 chars.). For each dataset three time-calibrated trees (timetrees) were calculated: a minimum-age timetree with node ages based on earliest occurrences in the fossil record; a ‘smoothed’ timetree using a range of time added to the root that is then averaged over zero-length internodes; and a tip-dated timetree. Comparisons within datasets show that the smoothed and tip-dated timetrees provide similar estimates. Only near the root node do BEAST estimates fall outside the smoothed timetree range. The BEAST model is not able to overcome limited sampling to correctly estimate divergences considerably older than sampled fossil occurrence dates. Conversely, the smoothed timetrees consistently provide node-ages far older than the strict dates or BEAST estimates for morphologically conservative sister-taxa when they sit on long ghost lineages. In this latter case, the relaxed-clock model appears to be correctly moderating the node-age estimate based on the limited morphological divergence. Topologies are generally similar across analyses, but BEAST trees for crocodyliforms differ when clades are deeply nested but contain very old taxa. It appears that the constant-rate sampling assumption of the BDSS tree prior influences topology inference by disfavoring long, unsampled branches. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
46. Where Have All the Giants Gone? How Animals Deal with the Problem of Size.
- Author
-
Dick, Taylor J. M. and Clemente, Christofer J.
- Subjects
- *
ANIMAL locomotion , *DINOSAUR extinction , *ANIMAL morphology , *ANIMAL ecophysiology , *BIOLOGICAL evolution - Abstract
The survival of both the hunter and the hunted often comes down to speed. Yet how fast an animal can run is intricately linked to its size, such that the fastest animals are not the biggest nor the smallest. The ability to maintain high speeds is dependent on the body’s capacity to withstand the high stresses involved with locomotion. Yet even when standing still, scaling principles would suggest that the mechanical stress an animal feels will increase in greater demand than its body can support. So if big animals want to be fast, they must find solutions to overcome these high stresses. This article explores the ways in which extant animals mitigate size-related increases in musculoskeletal stress in an effort to help understand where all the giants have gone. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
47. Dinosaur Metabolism and the Allometry of Maximum Growth Rate.
- Author
-
Myhrvold, Nathan P.
- Subjects
- *
BASAL metabolism , *ALLOMETRY , *STATISTICAL power analysis , *REGRESSION analysis , *STATISTICAL correlation , *SYSTEMATIC reviews - Abstract
The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
48. A New Giant Titanosauria (Dinosauria: Sauropoda) from the Late Cretaceous Bauru Group, Brazil.
- Author
-
Bandeira, Kamila L. N., Medeiros Simbras, Felipe, Batista Machado, Elaine, de Almeida Campos, Diogenes, Oliveira, Gustavo R., and Kellner, Alexander W. A.
- Subjects
- *
DINOSAURS , *SAURISCHIA , *CRETACEOUS Period , *AUTAPOMORPHY - Abstract
Titanosaurian dinosaurs include some of the largest land-living animals that ever existed, and most were discovered in Cretaceous deposits of Argentina. Here we describe the first Brazilian gigantic titanosaur, Austroposeidon magnificus gen. et sp. nov., from the Late Cretaceous Presidente Prudente Formation (Bauru Group, Paraná Basin), São Paulo State, southeast Brazil. The size of this animal is estimated around 25 meters. It consists of a partial vertebral column composed by the last two cervical and the first dorsal vertebrae, all fairly complete and incomplete portions of at least one sacral and seven dorsal elements. The new species displays four autapomorphies: robust and tall centropostzygapophyseal laminae (cpol) in the last cervical vertebrae; last cervical vertebra bearing the posterior centrodiapophyseal lamina (pcdl) bifurcated; first dorsal vertebra with the anterior and posterior centrodiapophyseal laminae (acdl/pcdl) curved ventrolaterally, and the diapophysis reaching the dorsal margin of the centrum; posterior dorsal vertebra bearing forked spinoprezygapophyseal laminae (sprl). The phylogenetic analysis presented here reveals that Austroposeidon magnificus is the sister group of the Lognkosauria. CT scans reveal some new osteological internal features in the cervical vertebrae such as the intercalation of dense growth rings with camellae, reported for the first time in sauropods. The new taxon further shows that giant titanosaurs were also present in Brazil during the Late Cretaceous and provides new information about the evolution and internal osteological structures in the vertebrae of the Titanosauria clade. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
49. A Basal Tapejarine (Pterosauria; Pterodactyloidea; Tapejaridae) from the Crato Formation, Early Cretaceous of Brazil.
- Author
-
Pêgas, Rodrigo Vargas, Leal, Maria Eduarda de Castro, and Kellner, Alexander Wilhelm Armin
- Subjects
- *
PTEROSAURIA , *FRUGIVORES , *MORPHOLOGY , *HYPEROSTOSIS frontalis interna , *REPTILES - Abstract
A three-dimensional and almost complete pterosaur mandible from the Crato Formation (Early Cretaceous of Northeastern Brazil), Araripe Basin, is described as a new species of a tapejarine tapejarid. Tapejarines are a particular group of toothless pterosaurs, characterized by well-developed cranial crests, downturned rostra, and have been proposed to represent frugivorous flying reptiles. Though comparatively well represented and distributed, the evolutionary history of the group is still poorly known, and the internal relationships of its members are not well understood. The new species here reported, named Aymberedactylus cearensis gen. et sp. nov., adds new data concerning the evolution of the group, concerning their morphology and geographical origin. It differs from known tapejarids due to its unusually elongate retroarticular process and a shallow fossa on the splenial exhibiting distinctive rugose texture. Furthermore, it exhibits a suite of basal and derived conditions within the Tapejaridae, demonstrating how their morphological traits probably evolved and that these forms were even more diverse than already acknowledged. The discovery of Aymberedactylus cearensis sheds new light on the evolutionary history of the Tapejarinae. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
50. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.
- Author
-
Wilson, John P., Woodruff, D. Cary, Gardner, Jacob D., Flora, Holley M., Horner, John R., and Organ, Chris L.
- Subjects
- *
SAURISCHIA , *DINOSAURS , *METAPLASIA , *PHYLOGENY , *BIOMECHANICS - Abstract
Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.