1. Neural correlates of weight-shift training in older adults: a randomized controlled study.
- Author
-
de Rond V, D'Cruz N, Hulzinga F, McCrum C, Verschueren S, de Xivry JO, and Nieuwboer A
- Subjects
- Female, Humans, Aged, Learning, Oxyhemoglobins metabolism, Motor Cortex metabolism
- Abstract
Mediolateral weight-shifting is an important aspect of postural control. As it is currently unknown whether a short training session of mediolateral weight-shifting in a virtual reality (VR) environment can improve weight-shifting, we investigated this question and also probed the impact of practice on brain activity. Forty healthy older adults were randomly allocated to a training (EXP, n = 20, age = 70.80 (65-77), 9 females) or a control group (CTR, n = 20, age = 71.65 (65-82), 10 females). The EXP performed a 25-min weight-shift training in a VR-game, whereas the CTR rested for the same period. Weight-shifting speed in both single- (ST) and dual-task (DT) conditions was determined before, directly after, and 24 h after intervention. Functional Near-Infrared Spectroscopy (fNIRS) assessed the oxygenated hemoglobin (HbO
2 ) levels in five cortical regions of interest. Weight-shifting in both ST and DT conditions improved in EXP but not in CTR, and these gains were retained after 24 h. Effects transferred to wider limits of stability post-training in EXP versus CTR. HbO2 levels in the left supplementary motor area were significantly increased directly after training in EXP during ST (change < SEM), and in the left somatosensory cortex during DT (change > SEM). We interpret these changes in the motor coordination and sensorimotor integration areas of the cortex as possibly learning-related., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF