7 results on '"Neergheen, Viruna"'
Search Results
2. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats.
- Author
-
Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH, Hargreaves IP, Neergheen V, Aiken CE, and Ozanne SE
- Subjects
- Animals, Antioxidants, Biomarkers metabolism, DNA Damage, Diet, Female, Inflammation pathology, Male, Muscle, Skeletal metabolism, NF-kappa B metabolism, Oxidants metabolism, Phenotype, Rats, Wistar, Telomere Shortening, Aging physiology, Growth and Development, Maternal Nutritional Physiological Phenomena, Muscle, Skeletal pathology, Oxidative Stress
- Abstract
'Developmental programming', which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed 'recuperated') in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67
phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1β (IL1β) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations., Competing Interests: The authors declare no competing or financial interests., (© 2016. Published by The Company of Biologists Ltd.)- Published
- 2016
- Full Text
- View/download PDF
3. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth.
- Author
-
Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP, Neergheen V, Aiken CE, Martin-Gronert MS, McConnell JM, and Ozanne SE
- Subjects
- Animals, Cytokines antagonists & inhibitors, Cytokines blood, Cytokines metabolism, Diet, Protein-Restricted adverse effects, Female, Fetal Development, Fetal Growth Retardation etiology, Fetal Growth Retardation immunology, Fetal Growth Retardation physiopathology, Hepatitis etiology, Hepatitis metabolism, Hepatitis pathology, Hyperinsulinism etiology, Hyperinsulinism prevention & control, Liver immunology, Liver metabolism, Liver pathology, Liver Cirrhosis etiology, Liver Cirrhosis metabolism, Liver Cirrhosis pathology, Male, Malnutrition physiopathology, Maternal Nutritional Physiological Phenomena, Pregnancy, Pregnancy Complications physiopathology, Rats, Wistar, Specific Pathogen-Free Organisms, Ubiquinone therapeutic use, Weaning, Anti-Inflammatory Agents, Non-Steroidal therapeutic use, Dietary Supplements, Fetal Growth Retardation diet therapy, Hepatitis prevention & control, Liver Cirrhosis prevention & control, Oxidative Stress, Ubiquinone analogs & derivatives
- Abstract
Background: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined., Objectives: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype., Design: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed "recuperated"). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase-polymerase chain reaction., Results: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 μg/mL per μg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01)., Conclusions: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia.
- Published
- 2016
- Full Text
- View/download PDF
4. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth1
- Author
-
Tarry-Adkins, Jane L, Fernandez-Twinn, Denise S, Hargreaves, Iain P, Neergheen, Viruna, Aiken, Catherine E, Martin-Gronert, Malgorzata S, McConnell, Josie M, and Ozanne, Susan E
- Subjects
Liver Cirrhosis ,Male ,Ubiquinone ,Weaning ,Hepatitis ,Fetal Development ,developmental programming ,Pregnancy ,Hyperinsulinism ,Diet, Protein-Restricted ,Animals ,low birth weight ,Rats, Wistar ,accelerated postnatal growth ,Fetal Growth Retardation ,Anti-Inflammatory Agents, Non-Steroidal ,Malnutrition ,Maternal Nutritional Physiological Phenomena ,Specific Pathogen-Free Organisms ,Pregnancy Complications ,Oxidative Stress ,Liver ,Dietary Supplements ,Cytokines ,Female ,coenzyme Q ,liver disease - Abstract
Background: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. Objectives: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. Design: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed “recuperated”). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase–polymerase chain reaction. Results: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 μg/mL per μg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). Conclusions: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia.
- Published
- 2015
5. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth
- Author
-
Tarry-Adkins, Jane L, Fernandez-Twinn, Denise S, Hargreaves, Iain P, Neergheen, Viruna, Aiken, Catherine E, Martin-Gronert, Malgorzata S, McConnell, Josie M, Ozanne, Susan E, Twinn, Denise [0000-0003-2610-277X], Aiken, Catherine [0000-0002-6510-5626], Ozanne, Susan [0000-0001-8753-5144], and Apollo - University of Cambridge Repository
- Subjects
Liver Cirrhosis ,Male ,Ubiquinone ,Weaning ,Hepatitis ,Fetal Development ,developmental programming ,Pregnancy ,Hyperinsulinism ,Diet, Protein-Restricted ,Animals ,low birth weight ,Rats, Wistar ,accelerated postnatal growth ,Fetal Growth Retardation ,Anti-Inflammatory Agents, Non-Steroidal ,Malnutrition ,Maternal Nutritional Physiological Phenomena ,Specific Pathogen-Free Organisms ,Pregnancy Complications ,Oxidative Stress ,Liver ,Dietary Supplements ,Cytokines ,Female ,coenzyme Q ,liver disease - Abstract
BACKGROUND: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. OBJECTIVES: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. DESIGN: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed "recuperated"). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase-polymerase chain reaction. RESULTS: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 μg/mL per μg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). CONCLUSIONS: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia.
- Published
- 2016
6. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth.
- Author
-
Tarry-Adkins, Jane L., Fernandez-Twinn, Denise S., Hargreaves, Iain P., Neergheen, Viruna, Aiken, Catherine E., Martin-Gronert, Malgorzata S., McConnell, Josie M., and Ozanne, Susan E.
- Subjects
BLOOD sugar analysis ,LIVER disease prevention ,FIBROSIS ,ANALYSIS of variance ,ANIMAL experimentation ,ANTHROPOMETRY ,COLLAGEN ,DIETARY supplements ,ENZYME-linked immunosorbent assay ,HISTOLOGICAL techniques ,HUMAN growth ,HYPERINSULINISM ,INFLAMMATION ,INSULIN ,INTERLEUKINS ,LIVER ,LONGITUDINAL method ,MALNUTRITION in pregnancy ,LIPID peroxidation (Biology) ,POLYMERASE chain reaction ,PROBABILITY theory ,RATS ,RESEARCH funding ,STAINS & staining (Microscopy) ,STATISTICS ,TUMOR necrosis factors ,UBIQUINONES ,WESTERN immunoblotting ,DATA analysis ,OXIDATIVE stress ,REVERSE transcriptase polymerase chain reaction ,DATA analysis software ,DESCRIPTIVE statistics ,IN vivo studies ,METABOLISM ,PREVENTION - Abstract
Background: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. Objectives: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q
10 (CoQ10 ) would prevent this programmed phenotype. Design: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed "recuperated"). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase-polymerase chain reaction. Results: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 µm) than in controls (5 ± 0.5 mm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor a: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 µg/mL per mg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). Conclusions: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
7. Levels of 5-methyltetrahydrofolate and ascorbic acid in cerebrospinal fluid are correlated: Implications for the accelerated degradation of folate by reactive oxygen species.
- Author
-
Aylett, Sophie-Beth, Neergheen, Viruna, Hargreaves, Iain P., Eaton, Simon, Land, John M., Rahman, Shamima, and Heales, Simon J.R.
- Subjects
- *
5-Methyltetrahydrofolate , *PHYSIOLOGICAL effects of vitamin C , *CEREBROSPINAL fluid , *REACTIVE oxygen species , *MITOCHONDRIA , *FREE radicals - Abstract
Highlights: [•] CSF conveys protection towards 5-methyltetrahydrofolate (5-MTHF). [•] CSF ascorbic acid correlates with 5-MTHF concentration. [•] Loss of neuronal mitochondrial function leads to free radical generation. [•] Free radicals accelerate 5-MTHF degradation. [•] Ascorbic acid prevents free radical mediated 5-MTHF degradation. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.