1. Fiber-laser-based green-pumped picosecond MgO:sPPLT optical parametric oscillator.
- Author
-
Chaitanya Kumar S and Ebrahim-Zadeh M
- Subjects
- Lasers, Magnesium Oxide, Optical Fibers, Optical Phenomena, Oscillometry instrumentation
- Abstract
We report a stable, high-power, picosecond optical parametric oscillator (OPO) at 160 MHz repetition rate synchronously pumped by a frequency-doubled mode-locked Yb-fiber laser at 532 nm and tunable in the near-infrared, across 874-1008 nm (signal) and 1126-1359 nm (idler). Using a 30-mm-long MgO:sPPLT crystal, the OPO provides average output power up to 780 mW in the signal at 918.58 nm and 600 mW in the idler at 1242 nm. The device operates stably over many days, even close to degeneracy, exhibiting passive long-term power stability better than 1.8% rms in the signal and 2.4% rms in the idler over 2.5 h at a temperature of 55°C. We investigate spectral and temporal characteristics of the signal pulses under different conditions and demonstrate cavity-length tuning enabled by the dispersion properties of MgO:sPPLT. The output signal pulses have a duration of 2.4 ps at 967 nm.
- Published
- 2013
- Full Text
- View/download PDF