1. Bulk segregant analysis coupled with transcriptomics and metabolomics revealed key regulators of bacterial leaf blight resistance in rice.
- Author
-
Ma X, Zhu M, Liu W, Li J, Liao Y, Liu D, Jin M, Fu C, and Wang F
- Subjects
- Transcriptome, Quantitative Trait Loci genetics, Gene Expression Profiling, Metabolomics, Disease Resistance genetics, Plant Diseases genetics, Plant Diseases microbiology, Oryza genetics, Oryza microbiology
- Abstract
Background: Bacterial leaf blight (BLB) is a highly destructive disease, causing significant yield losses in rice (Oryza sativa). Genetic variation is contemplated as the most effective measure for inducing resistance in plants. The mutant line T1247 derived from R3550 (BLB susceptible) was highly resistant to BLB. Therefore, by utilizing this valuable source, we employed bulk segregant analysis (BSA) and transcriptome profiling to identify the genetic basis of BLB resistance in T1247., Results: The differential subtraction method in BSA identified a quantitative trait locus (QTL) on chromosome 11 spanning a 27-27.45 Mb region with 33 genes and 4 differentially expressed genes (DEGs). Four DEGs (Pā<ā0.01) with three putative candidate genes, OsR498G1120557200, OsR498G1120555700, and OsR498G1120563600,0.01 in the QTL region were identified with specific regulation as a response to BLB inoculation. Moreover, transcriptome profiling identified 37 resistance analogs genes displaying differential regulation., Conclusions: Our study provides a substantial addition to the available information regarding QTLs associated with BLB, and further functional verification of identified candidate genes can broaden the scope of understanding the BLB resistance mechanism in rice., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF