1. Long-term impact of pulses crop rotation on soil fungal diversity in aerobic and wetland rice cultivation.
- Author
-
Panneerselvam P, Senapati A, Chidambaranathan P, Prabhukarthikeyan SR, Mitra D, Pandi Govindharaj GP, Nayak AK, and Anandan A
- Subjects
- Soil, Wetlands, Crop Production, Soil Microbiology, Oryza, Ascomycota
- Abstract
Pulse crop rotation in rice cultivation is a widely accepted agronomic practice. Depending upon the water regime, rice cultivation has been classified into wetland and aerobic practices. However, no studies have been conducted so far to understand the impact of pulse crop rotation and rice mono-cropping on fungal diversity, particularly in aerobic soil. A targeted metagenomic study was conducted to compare the effects of crop rotations (rice-rice and rice-pulse) on fungal diversity in wetland and aerobic rice soils. Out of 445 OTUs, 41.80% was unknown and 58.20% were assigned to six phyla, namely Ascomycota (56.57%), Basidiomycota (1.32%), Zygomycota (0.22%), Chytridiomycota (0.04%), Glomeromycota (0.03%), and Blastocladiomycota (0.02%). Functional trait analysis found wetland rice-pulse rotation increased symbiotrophs (36.7%) and saprotrophs (62.1%) population, whereas higher pathotrophs were found in aerobic rice-rice (62.8%) and rice-pulse (61.4%) cropping system. Certain soil nutrients played a major role in shaping the fungal community; Ca had significant (p < 0.05) positive impact on saprotroph, symbiotroph and endophytes, whereas Cu had significant (p < 0.05) negative impact on pathotrophs. This study showed that rice-pulse crop rotation could enhance the saprophytic and symbiotic fungal diversity in wetland and reduce the population of pathogens in aerobic rice cultivation., Competing Interests: Declaration of competing interest Authors declare that they have no competing interests., (Copyright © 2023 British Mycological Society. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF