1. Optimizing Mechanical and Electrical Performance of SWCNTs/Fe3O4 Epoxy Nanocomposites: The Role of Filler Concentration and Alignment
- Author
-
Zulfiqar Ali, Saba Yaqoob, Alessandro Lo Schiavo, and Alberto D’Amore
- Subjects
epoxy composites ,single-walled carbon nanotubes (SWCNTs) ,Fe3O4 nanoparticles ,magnetic alignment ,mechanical properties ,electrical conductivity ,Organic chemistry ,QD241-441 - Abstract
The demand for polymer composites with improved mechanical and electrical properties is crucial for advanced aerospace, electronics, and energy storage applications. Single-walled carbon nanotubes (SWCNTs) and iron oxide (Fe3O4) nanoparticles are key fillers that enhance these properties, yet challenges like orientation, uniform dispersion, and agglomeration must be addressed to realize their full potential. This study focuses on developing SWCNTs/Fe3O4 epoxy composites by keeping the SWCNT concentration constant at 0.03 Vol.% and varying with Fe3O4 concentrations at 0.1, 0.5, and 1 Vol.% for two different configurations: randomly orientated (R-) and magnetic field-assisted horizontally aligned (A-) SWCNTs/Fe3O4 epoxy composites, and investigates the effects of filler concentration, dispersion, and magnetic alignment on the mechanical and electrical properties. The research reveals that both composite configurations achieve an optimal mechanical performance at 0.5 Vol.% Fe3O4, while A- SWCNTs/Fe3O4 epoxy composites outperformed at all concentrations. However, at 1 Vol.% Fe3O4, mechanical properties decline due to nanoparticle agglomeration, which disrupts stress distribution. In contrast, electrical conductivity peaks at 1 Vol.% Fe3O4, indicating that the higher density of Fe3O4 nanoparticles enhances the conductive network despite the mechanical losses. This study highlights the need for precise control over filler content and alignment to optimize mechanical strength and electrical conductivity in SWCNTs/Fe3O4 epoxy nanocomposites.
- Published
- 2024
- Full Text
- View/download PDF