1. Effects of Humic Acid-Copper Interactions on Growth, Nutrient Absorption, and Photosynthetic Performance of Citrus sinensis Seedlings in Sand Culture.
- Author
-
Huang, Wei-Tao, Shen, Qian, Yang, Hui, Chen, Xu-Feng, Huang, Wei-Lin, Wu, Han-Xue, Lai, Ning-Wei, Yang, Lin-Tong, Huang, Zeng-Rong, and Chen, Li-Song
- Subjects
COPPER ,CHLOROPHYLL spectra ,COPPER poisoning ,NUTRIENT uptake ,ELECTRON transport ,BORON ,ORANGES ,NITROGEN - Abstract
In China, high copper (Cu) and low organic matter often occur in some citrus orchard soils. However, the underlying mechanisms by which humic acid (HA) stimulates growth and mitigates Cu toxicity of citrus seedlings are unclear. After being treated with 0, 0.1, or 0.5 mM sodium humate and 0.5 or 400 μM CuCl
2 (Cu excess) for 24 weeks, sweet orange [Citrus sinensis (L.) Osbeck cv. Xuegan] seedlings were used to examine the impacts of HA-Cu interactions on seedling growth, nutrient uptake, leaf pigments, and photosynthetic performance that was revealed by chlorophyll a fluorescence transient. Copper excess reduced root, stem, and leaf dry weight (DW) by 42.4%, 65.4%, and 61.6%, respectively at 0 mM HA, and by 17.3%, 25.4%, and 31.4%, respectively at 0.5 mM HA; and that the levels of Cu in leaves, stems, and roots declined with elevating HA supply. Copper excess caused some rotten and dead fibrous roots at 0 mM HA, but not at 0.5 mM HA. Adding HA lowered Cu uptake per root DW (UPR), the levels of Cu in leaves, stems, and roots, and the competition of Cu2+ with Mg2+ and Fe2+ , and therefore mitigated root impairment caused by Cu excess. The HA-mediated alleviation of root damage caused by Cu excess increased the uptake per plant and UPR of nitrogen, potassium, magnesium, phosphorus, calcium, sulfur, boron, and manganese, and therefore alleviated Cu excess-induced decline in seedling growth, impairment to leaf photosynthetic electron transport chains, and decrease in leaf pigments. For 0.5 μM Cu-treated seedlings, adding HA promoted seedling growth by improving root nutrient uptake and leaf photosynthetic performance. Cu excess aggravated the impacts of HA supplementation on seedling growth, leaf photosynthetic performance, and root nutrient uptake. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF