Youichi Ohyama, Khanh Bui, Amy Wu, Rodrigo de Paiva Vilaça, Pin Jie Huang, Olivier Le Fèvre, Peter H. Mao, Eric M. Ek, Robert H. Barkhouser, David Le Mignant, Richard C. Y. Chou, Alexandre Bozier, Yin-Chang Chang, Craig P. Loomis, M. Jaquet, Sandrine Pascal, Décio Ferreira, Richard S. Ellis, Paul T. P. Ho, Richard Dekany, Hitoshi Murayama, Roger Smith, Naoyuki Tamura, Chaz Morantz, Olivia R. Dawson, Stephen A. Smee, Larry E. Hovland, Atsushi Shimono, Jason G. Kempenaar, Mark A. Schwochert, Reed Riddle, Timothy M. Heckman, Brice Ménard, Daniel J. Reiley, Charles Fisher, David N. Spergel, Ligia Souza de Oliveira, Masahiko Kimura, F. Madec, Mirek Golebiowski, Naruhisa Takato, Hajime Sugai, Thomas Pegot-Ogier, Leandro Henrique dos Santos, Rosie Wyse, Graham J. Murray, Lucas Souza Marrara, Hung-Hsu Ling, Antonio Cesar de Oliveira, Murdock Hart, Akitoshi Ueda, C.-Y. Wen, Christian Surace, Michael Seiffert, Robert H. Lupton, Laerte Sodré, Yen-Sang Hu, Shu-Fu Hsu, Hrand Aghazarian, S. Vives, Laurence Tresse, Michael A. Carr, Stephen C. Hope, Charles L. Bennett, James E. Gunn, Eamon J. Partos, Clément Vidal, Bruno Castilho, David F. Braun, Hsin-Yo Chen, Jennifer E. Karr, Jesulino Bispo dos Santos, Matthew E. King, Shiang-Yu Wang, Joe D. Orndorff, Didier Ferrand, Claudia Mendes de Oliveira, Hiroshi Karoji, Robin J. English, Steve Bickerton, Marcio Vital de Arruda, Ronald E. Steinkraus, Chi-Hung Yan, Christopher M. Capocasale, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Ramsay, Suzanne K., McLean, Ian S., and Takami, Hideki
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 um to 1.26 um, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 um to 0.89 um also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts project, while Hyper Suprime-Cam works on the imaging part. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated glass-molded microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two stages of piezo-electric rotary motors. Its engineering model has been produced and tested. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens surface shapes. Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with three arms. Prototype VPH gratings have been optically tested. CCD production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted CCDs with blue-optimized coating for blue arms., 14 pages, 12 figures, submitted to "Ground-based and Airborne Instrumentation for Astronomy V, Suzanne K. Ramsay, Ian S. McLean, Hideki Takami, Editors, Proc. SPIE 9147 (2014)"