1. Shaping caustics into propagation-invariant light
- Author
-
Mark R. Dennis, Alessandro Zannotti, Cornelia Denz, Miguel A. Alonso, University of Münster, MOSAIC (MOSAIC), Institut FRESNEL (FRESNEL), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), University of Bristol [Bristol], Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Universitäts- und Landesbibliothek Münster
- Subjects
530 Physics ,Science ,Optical materials and structures ,Optical physics ,General Physics and Astronomy ,FOS: Physical sciences ,Geometric shape ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,010309 optics ,symbols.namesake ,Optics ,Simple (abstract algebra) ,0103 physical sciences ,ddc:530 ,Invariant (mathematics) ,010306 general physics ,lcsh:Science ,Physics ,[PHYS]Physics [physics] ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Multidisciplinary ,business.industry ,Resolution (electron density) ,General Chemistry ,Range (mathematics) ,symbols ,Physics::Accelerator Physics ,lcsh:Q ,business ,Maxima ,Bessel function ,Structured light ,Physics - Optics ,Optics (physics.optics) - Abstract
Structured light has revolutionized optical particle manipulation, nano-scaled material processing, and high-resolution imaging. In particular, propagation-invariant light fields such as Bessel, Airy, or Mathieu beams show high robustness and have a self-healing nature. To generalize such beneficial features, these light fields can be understood in terms of caustics. However, only simple caustics have found applications in material processing, optical trapping, or cell microscopy. Thus, these technologies would greatly benefit from methods to engineer arbitrary intensity shapes well beyond the standard families of caustics. We introduce a general approach to arbitrarily shape propagation-invariant beams by smart beam design based on caustics. We develop two complementary methods, and demonstrate various propagation-invariant beams experimentally, ranging from simple geometric shapes to complex image configurations such as words. Our approach generalizes caustic light from the currently known small subset to a complete set of tailored propagation-invariant caustics with intensities concentrated around any desired curve., Finanziert durch den Open-Access-Publikationsfonds der Westfälischen Wilhelms-Universität Münster (WWU Münster).
- Published
- 2020
- Full Text
- View/download PDF