1. Highly specific, multiplexed isothermal pathogen detection with fluorescent aptamer readout.
- Author
-
Aufdembrink LM, Khan P, Gaut NJ, Adamala KP, and Engelhart AE
- Subjects
- Cell-Free System, Fluorescence, Humans, Promoter Regions, Genetic genetics, Sensitivity and Specificity, Aptamers, Nucleotide chemistry, Fluorescent Dyes chemistry, Oligonucleotides chemistry, Polymerase Chain Reaction methods, Self-Sustained Sequence Replication methods
- Abstract
Isothermal, cell-free, synthetic biology-based approaches to pathogen detection leverage the power of tools available in biological systems, such as highly active polymerases compatible with lyophilization, without the complexity inherent to live-cell systems, of which nucleic acid sequence based amplification (NASBA) is well known. Despite the reduced complexity associated with cell-free systems, side reactions are a common characteristic of these systems. As a result, these systems often exhibit false positives from reactions lacking an amplicon. Here we show that the inclusion of a DNA duplex lacking a promoter and unassociated with the amplicon fully suppresses false positives, enabling a suite of fluorescent aptamers to be used as NASBA tags (Apta-NASBA). Apta-NASBA has a 1 pM detection limit and can provide multiplexed, multicolor fluorescent readout. Furthermore, Apta-NASBA can be performed using a variety of equipment, for example, a fluorescence microplate reader, a qPCR instrument, or an ultra-low-cost Raspberry Pi-based 3D-printed detection platform using a cell phone camera module, compatible with field detection., (© 2020 Aufdembrink et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.)
- Published
- 2020
- Full Text
- View/download PDF