1. Enhanced susceptibility of obese mice to glycidamide-induced sperm chromatin damage without increased oxidative stress.
- Author
-
Gutzkow KB, Duale N, Danielsen T, von Stedingk H, Shahzadi S, Instanes C, Olsen AK, Steffensen IL, Hofer T, Törnqvist M, Brunborg G, and Lindeman B
- Subjects
- Animals, DNA Fragmentation drug effects, Diet, High-Fat, Liver drug effects, Liver metabolism, Male, Mice, Oxidation-Reduction, Oxidative Stress drug effects, Spermatozoa drug effects, Testis drug effects, Testis metabolism, Chromatin metabolism, Epoxy Compounds pharmacology, Obesity metabolism, Oxidative Stress physiology, Spermatozoa metabolism
- Abstract
Diet-induced obesity is known to impair male reproduction and may aggravate the male reproductive toxicity of the food contaminant acrylamide. Exposure of male mice to acrylamide induces paternally mediated pre- and post-implantation losses because of spermatozoal toxicity and these effects are potentiated in mice fed a high-fat diet. Glycidamide - an acrylamide metabolite - is the primary mediator of reproductive effects in males. The mechanisms causing the interaction between diet and acrylamide are not clear. However, diet-induced obesity is associated with oxidative stress in male reproductive tissues which might contribute to increased germ cell susceptibility. In this study, we investigated whether a moderate diet-induced obesity regimen could interfere with glycidamide-induced spermatozoal toxicity and increase oxidative stress. For this purpose, sperm chromatin integrity, oxidised DNA and protein levels, transcript levels of oxidative stress responsive genes and glycidamide-induced DNA and haemoglobin adducts were analysed in samples from male mice exposed to a high-fat diet for 6 weeks in combination with a single glycidamide exposure 7 days prior to sacrifice. We found that glycidamide-induced sperm DNA fragmentation was markedly higher in obese than in lean mice. However, the levels of oxidised DNA and/or protein in blood, liver and testicular tissue was lower in obese than in lean mice. Accompanying the reduced level of oxidised macromolecules, the transcript levels of several oxidative stress-related genes were altered in the liver and testis from obese mice suggesting induction of an antioxidant response in these animals. The haemoglobin-glycidamide adduct levels were higher in obese than in lean animals, whereas obesity did not seem to increase the level of glycidamide-induced DNA adducts. These findings show that a moderate diet-induced obesity regimen may potentiate glycidamide-induced sperm cells toxicity and suggest that the increase in glycidamide-induced sperm toxicity observed in obese mice does not depend on overt oxidative stress., (© 2016 American Society of Andrology and European Academy of Andrology.)
- Published
- 2016
- Full Text
- View/download PDF