1. Experimental Challenge to the Big-Bang Nucleosynthesis - Cosmological 7Li Problem in BBN -.
- Author
-
Kubono, S., Kawabata, T., Hou, S. Q., and He, J. J.
- Subjects
- *
LITHIUM isotopes , *BIG bang theory , *NUCLEOSYNTHESIS , *HELIUM isotopes , *NUCLEAR reactions , *BERYLLIUM isotopes - Abstract
The primordial nucleosynthesis(BBN) right after the big bang (BB) is one of the key elements that basically support the BB model. The BBN is well known that it produced primarily light elements, and explains reasonably most of the elemental abundances. However, there remains an interesting and serious question. That is so called the cosmological 7Li problem in BBN. The BBN simulations using nuclear data together with the recent detailed micro-wave background measurements explain most of the light elements including D, 4He, etc, but the 7Li abundance is over predicted roughly by a factor of three. Although this problem should be investigated in all the fields relevant including physics and astronomical observations, I will concentrate my discussion on the nuclear physics side, especially the recent progress for studying the last possible major destruction process of 7Be, the 7Be(n,α)4He reaction, which would reduce the overproduction if the cross section is large. There are several efforts recently made for the 7Be(n,α)4He reaction in the world. A new theoretical estimate was made compiling all available data of the mirror reaction 7Li(p,α)4He, suggesting about one order smaller reaction rate than the ones currently being used (Wagoner rate). The n-TOF group measured some part of the s-wave components of the reaction, suggesting that the s-wave contributions are much smaller than the Wagoner rate. The p-wave component was measured clearly at RCNP, Osaka using the time-reverse reaction 4He(α,n)7Be, indicating that the p-wave contribution dominates at the effective temperature region for the BBN. However, the sum of the s-wave and p-wave contributions is about one order of magnitude smaller than the Wagoner rate. It should be of great interest to confirm by the indirect method, Trojan-Horse method to deduce cross sections at the effective temperature region, and also see the cross sections for a wider energy range systematically, which is under way by the BELICOS project by Livio Lamia and by the CRIB collaboration lead by S. Hayakawa. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF