1. Stochastic modulational instability in the nonlinear Schr\'odinger equation with colored random dispersion
- Author
-
Andrea Armaroli, Guillaume Dujardin, Alexandre Kudlinski, Arnaud Mussot, Stefano Trillo, Stephan De Bièvre, Matteo Conforti, Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé (LPP), Systèmes de particules et systèmes dynamiques (Paradyse), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Università degli Studi di Ferrara = University of Ferrara (UniFE), ANR-16-IDEX-0004,ULNE,ULNE(2016), Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Paradyse, Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Inria Lille - Nord Europe, and Università degli Studi di Ferrara (UniFE)
- Subjects
optical fibers ,nonlinear optics ,FOS: Physical sciences ,frequency conversion ,Pattern Formation and Solitons (nlin.PS) ,disorder ,01 natural sciences ,Nonlinear Sciences - Pattern Formation and Solitons ,NO ,optical fibers, frequency conversion, nonlinear optics, disorder ,010309 optics ,[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS] ,0103 physical sciences ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,010306 general physics ,Optics (physics.optics) ,Physics - Optics - Abstract
We study modulational instability (MI) in optical fibers with random group-velocity dispersion (GVD). We consider Gaussian and dichotomous colored stochastic processes. We resort to different analytical methods (namely, the cumulant expansion and the functional approach) and assess their reliability in estimating the MI gain of stochastic origin. If the power spectral density (PSD) of the GVD fluctuations is centered at null wavenumber, we obtain low-frequency MI sidelobes which converge to those given by a white noise perturbation when the correlation length tends to 0. If instead the stochastic processes are modulated in space, one or more MI sidelobe pairs corresponding to the well-known parametric resonance (PR) condition can be found. A transition from small and broad sidelobes to peaks nearly indistinguishable from PR-MI is predicted, in the limit of large perturbation amplitudes and correlation lengths of the random process. We find that the cumulant expansion provides good analytical estimates for small PSD values and small correlation lengths, when the MI gain is very small. The functional approach is rigorous only for the dichotomous processes, but allows us to model a wider range of parameters and to predict the existence of MI sidelobes comparable to those observed in homogeneous fibers of anomalous GVD, 12 pages, 6 figures submitted
- Published
- 2022
- Full Text
- View/download PDF