13 results on '"Bell, T. A."'
Search Results
2. Contribution of <italic>Medicago sativa</italic> to the productivity and nutritive value of forage in semi‐arid grassland pastures.
- Author
-
Klabi, R., Bell, T. H., Hamel, C., Iwaasa, A., Schellenberg, M. P., and St‐Arnaud, M.
- Subjects
- *
ALFALFA , *NUTRITIVE value of feeds , *GRASS-legume pastures , *SOIL fertility , *CHEMICAL composition of plants , *DRY matter content of plants - Abstract
Abstract: The inclusion of legumes in semi‐arid native grasslands may promote the productivity and nutritive value of forage. This study was designed to assess the effect of legumes (the introduced legume
Medicago sativa or the native legumeDalea purpurea ) and soil P fertility (addition of 0, 50, or 200 P2O5 kg/ha at seeding) on the dry matter and nutrient content of native grasses mixtures, compared with the commonly used introduced forage grassBromus biebersteinii grown withM. sativa . Plant harvests were performed in September 2008, July 2009 and September 2009. Plants nutrient content, δ15N value and dry matter were analysed. Results show that theM. sativa enhanced the N and P concentrations of native grass mixtures early in the summer, as well as the N concentration inBouteloua gracilis in late summer of the driest year, 2009. The higher AM fungal diversity promoted byM. sativa was positively correlated with the dry matter and nitrogen uptake ofM. sativa and with the P concentration of native grasses, in early summer. Overall, this study shows thatM. sativa promoted beneficial AM fungal taxa and improved forage production in the semi‐arid prairies. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
3. Nitrogen hydrides in the cold envelope of IRAS16293-2422
- Author
-
Hily-Blant, Pierre, Maret, S., Bacmann, A., Bottinelli, S., Parise, B., Caux, E., Faure, A., Bergin, E. A., Blake, G. A., Castets, Alain, Ceccarelli, C., Cernicharo, J., Coutens, A., Crimier, N., Demyk, K., Dominik, C., Gerin, M., Hennebelle, P., Henning, T., Kahane, C., Klotz, A., Melnick, G., Pagani, L., Schilke, P., Vastel, C., Wakelam, Valentine, Walters, A., Baudry, Alain, Bell, T., Benedettini, M., Boogert, A., Cabrit, S., Caselli, P., Codella, C., Comito, C., Encrenaz, P., Falgarone, E., Fuente, A., Goldsmith, P. F., Helmich, F., Herbst, E., Jacq, T., Kama, M., Langer, W., Lefloch, B., Lis, D., Lord, S., Lorenzani, A., Neufeld, D., Nisini, B., Pacheco, S., Phillips, T., Salez, M., Saraceno, P., Schuster, K., Tielens, X., Van Der Tak, F., Van Der Wiel, M. H. D., Viti, S., Wyrowski, F., Yorke, H., Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University [Cambridge]-Smithsonian Institution, Laboratoire Optimisation de la Conception et Ingénierie de l'Environnement (LOCIE), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Centro de Investigaciones Biológicas (CSIC), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Radioastronomie (LRA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Observatoire de Haute-Provence (OHP), Institut Pythéas (OSU PYTHEAS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Radioastronomie (MPIFR), Civilisations atlantiques & Archéosciences (C2A), Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR Histoire, Histoire de l'Art et Archéologie (UFR HHAA), Université de Nantes (UN)-Université de Nantes (UN), INAF - Osservatorio Astrofisico di Arcetri (OAA), Istituto Nazionale di Astrofisica (INAF), Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Ohio State University [Columbus] (OSU), Osservatorio di Astrofisica di Roma (OAR), Istituto di Fisica dello Spazio Interplanetario (IFSI), Consiglio Nazionale delle Ricerche (CNR), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Harvard University-Smithsonian Institution, Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Roma (OAR), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Low Energy Astrophysics (API, FNWI), Kapteyn Astronomical Institute, Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Smithsonian Institution-Harvard University [Cambridge], École normale supérieure - Paris (ENS Paris), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD), Université de Nantes - UFR Histoire, Histoire de l'Art et Archéologie (UFR HHAA), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture et de la Communication (MCC), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ministère de la Culture et de la Communication (MCC)-Université de Rennes 2 (UR2), and Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR Histoire, Histoire de l'Art et Archéologie (UFR HHAA)
- Subjects
DISSOCIATIVE RECOMBINATION ,Astronomy ,Continuum (design consultancy) ,NH ,FOS: Physical sciences ,chemistry.chemical_element ,PROTOSTAR IRAS16293-2422 ,Astrophysics ,01 natural sciences ,7. Clean energy ,ISM: abundances ,Reaction rate ,chemistry.chemical_compound ,MOLECULES ,CHEMISTRY ,INTERSTELLAR CLOUDS ,0103 physical sciences ,Protostar ,010303 astronomy & astrophysics ,Hyperfine structure ,ComputingMilieux_MISCELLANEOUS ,ISM: general ,Physics ,SPECTROSCOPY ,010304 chemical physics ,Research Programm of Institute for Mathematics, Astrophysics and Particle Physics ,Hydride ,Amidogen ,astrochemistry ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,N2H+ ,Astronomy and Astrophysics ,REGIONS ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Nitrogen ,Astrophysics - Astrophysics of Galaxies ,DARK CLOUDS ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,chemistry ,13. Climate action ,Space and Planetary Science ,Chemical physics ,Astrophysics of Galaxies (astro-ph.GA) ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Absorption (chemistry) - Abstract
International audience; Nitrogen is the fifth most abundant element in the Universe, yet the gas-phase chemistry of N-bearing species remains poorly understood. Nitrogen hydrides are key molecules of nitrogen chemistry. Their abundance ratios place strong constraints on the production pathways and reaction rates of nitrogen-bearing molecules. We observed the class 0 protostar IRAS 16293-2422 with the heterodyne instrument HIFI, covering most of the frequency range from 0.48 to 1.78 THz at high spectral resolution. The hyperfine structure of the amidogen radical o-NH2 is resolved and seen in absorption against the continuum of the protostar. Several transitions of ammonia from 1.2 to 1.8 THz are also seen in absorption. These lines trace the low-density envelope of the protostar. Column densities and abundances are estimated for each hydride. We find that NH:NH2:NH3 ≈ 5:1:300. Dark clouds chemical models predict steady-state abundances of NH2 and NH3 in reasonable agreement with the present observations, whilst that of NH is underpredicted by more than one order of magnitude, even using updated kinetic rates. Additional modelling of the nitrogen gas-phase chemistry in dark-cloud conditions is necessary before having recourse to heterogen processes. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.Appendices (pages 6, 7) are only available in electronic form at http://www.aanda.org
- Published
- 2010
4. Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations.
- Author
-
Paulot, F., Jacob, D. J., Johnson, M. T., Bell, T. G., Baker, A. R., Keene, W. C., Lima, I. D., Doney, S. C., and Stock, C. A.
- Subjects
SEAWATER ,ATMOSPHERIC ammonia ,PLANKTON ,NITRIFICATION ,BIOGEOCHEMISTRY ,ATMOSPHERIC aerosols - Abstract
Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NH
x (sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx (sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx (sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a−1 , much lower than current literature values (7-23 TgN a−1 ), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a−1 ). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2-5 TgN a−1 , comparable in magnitude to other natural sources from open fires and soils. [ABSTRACT FROM AUTHOR]- Published
- 2015
- Full Text
- View/download PDF
5. Nitrogen hydrides in interstellar gas II. Analysis of Herschel/HIFI observations towards W49N and G10.6-0.4 (W31C).
- Author
-
Persson, C. M., De Luca, M., Mookerjea, B., Olofsson, A. O. H., Black, J. H., Gerin, M., Herbst, E., Bell, T. A., Coutens, A., Godard, B., Goicoechea, J. R., Hassel, G. E., Hily-Blant, P., Menten, K. M., Müller, H. S. P., Pearson, J. C., and Yu, S.
- Subjects
NITROGEN ,STAR formation ,ABSORPTION ,INTERSTELLAR gases ,STATISTICAL correlation - Abstract
As a part of the Herschel key programme PRISMAS, we have used the Herschel/HIFI instrument to observe interstellar nitrogen hydrides along the sight-lines towards eight high-mass star-forming regions in order to elucidate the production pathways leading to nitrogen-bearing species in diffuse gas. Here, we report observations towards W49N of the NH N = 1-0, J = 2-1, and J = 1-0, ortho-NH
2 NKa,Kc J = 11,1 3/2-00,0 1/2, ortho-NH3 JK = 10 -00 and 20 -10 , para-NH3 JK = 21 -11 transitions, and unsuccessful searches for NH+. All detections show absorption by foreground material over a wide range of velocities, as well as absorption associated directly with the hot-core source itself. As in the previously published observations towards G10.6-0.4, the NH, NH2 and NH3 spectra towards W49N show strikingly similar and non-saturated absorption features. We decompose the absorption of the foreground material towards W49N into different velocity components in order to investigate whether the relative abundances vary among the velocity components, and, in addition, we re-analyse the absorption lines towards G10.6-0.4 in the same manner. Abundances, with respect to molecular hydrogen, in each velocity component are estimated using CH, which is found to correlate with H2 in the solar neighbourhood diffuse gas. The analysis points to a co-existence of the nitrogen hydrides in diffuse or translucent interstellar gas with a high molecular fraction. Towards both sources, we find that NH is always at least as abundant as both o-NH2 and o-NH3 , in sharp contrast to previous results for dark clouds. We find relatively constant N(NH)/N(o-NH3 ) and N(o-NH2 )/N(o-NH3 ) ratios with mean values of 3.2 and 1.9 towards W49N, and 5.4 and 2.2 towards G10.6-0.4, respectively. The mean abundance of o-NH3 is ~2 × 10-9 towards both sources. The nitrogen hydrides also show linear correlations with CN and HNC towards both sources, and looser correlations with CH. The upper limits on the NH+ abundance indicate column densities ≤2-14% of N(NH), which is in contrast to the behaviour of the abundances of CH+ and OH+ relative to the values determined for the corresponding neutrals CH and OH. Surprisingly low values of the ammonia ortho-to-para ratio are found in both sources, ≈ 0.5-0.7 ± 0.1, in the strongest absorption components. This result cannot be explained by current models as we had expected to find a value of unity or higher. [ABSTRACT FROM AUTHOR]- Published
- 2012
- Full Text
- View/download PDF
6. Role of sublayer in determining load bearing capacity of plasma nitrocarburised pure iron.
- Author
-
Suhadi, A., Dong, H., and Bell, T.
- Subjects
IRON ,PLASMA gases ,NITROGEN ,HYDROGEN ,ENGINEERING - Abstract
Plasma austenitic nitrocarburising as well as plasma ferritic nitrocarburising treatments of pure iron have been carried out in a modified dc plasma unit at 700°C with a gas mixture of nitrogen, hydrogen and organic vapour as the carbon–nitrogen media supplier. The composition, phase structure, microstructure and hardness of the plasma nitrocarburised surface were characterised by a number of materials analytical techniques. The load bearing capacities of ferritic nitrocarburised and austenitic carburised samples were evaluated using a Falex tribometer, and the effect of the sublayer in determining the load bearing capacity of plasma nitrocarburised material was investigated. The experimental results show that the load bearing capacity of plasma nitrocarburised pure iron is mainly determined by the hardness of the sublayer. The load bearing capacity of plasma nitrocarburised pure iron increases in the order of (i) plasma ferritic nitrocarburised, (ii) plasma austenitic nitrocarburised and slow cooled, and (iii) plasma austenitic nitrocarburised, quenched and subzero treated. Based on the experimental results, the role of the sublayer in determining the load bearing capacity of plasma nitrocarburised material is discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
7. Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel
- Author
-
Li, C.X. and Bell, T.
- Subjects
- *
AUSTENITIC stainless steel , *CORROSION & anti-corrosives , *NITROGEN , *STEEL , *STAINLESS steel , *STEEL corrosion , *CHEMICAL inhibitors , *DETERIORATION of materials , *METALLIC surfaces - Abstract
AISI 316 austenitic stainless steel has been plasma nitrided using the active screen plasma nitriding (ASPN) technique. Corrosion properties of the untreated and AS plasma nitrided 316 steel have been evaluated using various techniques, including qualitative evaluation after etching in 50%HCl + 25%HNO3 + 25%H2O, weight loss measurement after immersion in 10% HCl, and anodic polarisation tests in 3.5% NaCl solution. The results showed that the untreated 316 stainless steel suffered severe localised pitting and crevice corrosion under the testing conditions. AS plasma nitriding at low temperature (420 °C) produced a single phase nitrided layer of nitrogen expanded austenite (S-phase), which considerably improved the corrosion properties of the 316 austenitic stainless steel. In contrast, AS plasma nitriding at a high temperature (500 °C) resulted in chromium nitride precipitation so that the bulk of the nitrided case had very poor corrosion resistance. However, a thin deposition layer on top of the nitrided case, which seems to be unique to AS plasma nitriding, could have alleviated the corrosion attack of the higher temperature nitrided 316 steel. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
8. Wear Performance of Ultra High Molecular Polyethylene Ion Implanted Weight.
- Author
-
Shi, W., Dong, H., and Bell, T.
- Subjects
POLYETHYLENE ,IONS ,NITROGEN ,MOLECULAR weights - Abstract
Surface modification of ultra high molecular weight polyethylene (UHMWPE) was explored using ion implantation with different dosages (1 × 10[sup 15] - 1 × 10[sup 17] ions cm [sup -2]) of nitrogen. The modified surfaces were characterised by SEM, nanoindentation and tribological tests. The experimental results showed that ion implantation can significantly increase the surface hardness of UHMWPE. However, the improvement in wear resistance of the modified UHMWPE is highly dose dependent. Compared with the untreated material, the low dose implanted UHMWPE exhibited a three fold improvement in wear resistance, while the high dose ion implanted material showed hardly any improvement although it possessed the highest hardness. [ABSTRACT FROM AUTHOR]
- Published
- 2003
- Full Text
- View/download PDF
9. Purging of CO from cucumber brines to reduce bloater damage
- Author
-
Fleming, H. P., Thompson, R. L., Bell, T. A., and Etchells, J. L.
- Subjects
NITROGEN ,CARBON dioxide - Published
- 1975
- Full Text
- View/download PDF
10. Improving the wear properties of Stellite 21 alloy by plasma surface alloying with carbon and nitrogen
- Author
-
Chen, J., Li, X.Y., Bell, T., and Dong, H.
- Subjects
- *
CARBON , *NITROGEN , *HEAT resistant alloys , *CHROMIUM group - Abstract
Abstract: This research was directed at improving the wear resistance of Stellite 21 alloy by developing novel surface engineering technologies. To this end, a series of plasma surface alloying (PSA) treatments with both carbon and nitrogen were conducted using a DC plasma unit with C–N bearing gas mixture at temperatures ranging from 400 to 550°C. The surface alloyed layers were analyzed by XRD, GDS, SEM/EDX, TEM and a microhardness tester. Detailed tribological characterization was carried out by using a reciprocating tribometer in air and in 3.5% NaCl solution. Experimental results have demonstrated that C and N supersaturated metastable phase, i.e. S-phase, can be formed by the PSA treatments with both carbon and nitrogen but at a high temperature of 550°C, chromium nitrides precipitated in the surface treated layer. The surface hardness of Stellite 21 alloy can be significantly increased by 2–3 times following the PSA treatments. The wear factor of Stellite 21 alloy in air and in 3.5% NaCl solution can be reduced by 99% and 96%, respectively. [Copyright &y& Elsevier]
- Published
- 2008
- Full Text
- View/download PDF
11. Austenitic plasma nitrocarburising of carbon steel in N2–H2 atmosphere with organic vapour additions
- Author
-
Suhadi, A., Li, C.X., and Bell, T.
- Subjects
- *
CARBON steel , *NITROGEN , *HYDROGEN , *DIFFUSION - Abstract
Abstract: Austenitic plasma nitrocarburising treatments of a medium carbon steel (0.47 wt.% C) have been carried out using a modified DC plasma furnace in a gas mixture of nitrogen, hydrogen and organic vapour of C6H6. Various gas compositions and treatment procedures have been used in order to produce a thicker monophase ε carbonitride compound layer on the carbon steel surface. The nitrocarburised layers have been examined with several analytical techniques including X-ray diffraction, glow discharge spectrometry, metallographic and microhardness tests. It has been found that austenitic plasma nitrocarburising with organic vapour as the carbon source can readily produce a desirable monophase ε compound layer on the investigated plain carbon steel surface. The ε compound layer is supported by an austenite layer followed by a diffusion layer which is expected to give higher load bearing capacity. It has also been found that the “two-step” plasma nitrocarburising process is advantageous over the “one-step” process since the monophase ε compound layer produced by the two-step process can be thicker, and the treatment temperature or the total treatment time can be reduced. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
12. Study on the active screen plasma nitriding and its nitriding mechanism
- Author
-
Zhao, C., Li, C.X., Dong, H., and Bell, T.
- Subjects
- *
NITRIDING , *DIFFUSION , *ADSORPTION (Chemistry) , *NITROGEN - Abstract
Abstract: The active screen plasma and DC plasma nitriding of the low alloy steel 722M24 are investigated. Experimental results showed that the metallurgical characteristics and hardening effect on 722M24 steel nitrided by AS plasma nitriding at both floating potential and grounded potential were similar to those nitrided by DC plasma nitriding. Particles sputtered from the active screen and deposited on the specimen surface play the role of the nitrogen carrier in AS plasma nitriding. XRD and high-resolution SEM analysis indicated that the particles with sizes in sub-micron scale were Fe x N (x >2). Based on metallurgical analysis and Optical Emission Spectrometer (OES) experimental results, an AS plasma nitriding model has been proposed considering that AS plasma nitriding is a multi-stage process, involving sputtering, physical adsorption, desorption, diffusion and deposition. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
13. Low temperature plasma nitrocarburising of AISI 316 austenitic stainless steel
- Author
-
Cheng, Zhao, Li, C.X., Dong, H., and Bell, T.
- Subjects
- *
LOW temperatures , *NITROGEN , *TEMPERATURE , *STEEL alloys , *SOLID solutions - Abstract
Plasma nitrocarburising was carried out at a low temperature to improve the surface hardness of AISI 316 austenitic stainless steel without degradation of its corrosion resistance. It was found that nitrogen and carbon atoms can simultaneously be dissolved into the austenite lattice during the nitrocarburising process, forming a nitrogen and carbon supersaturated solid solution, which has a face centre tetragonal (fct) structure (i.e. the S phase). GDS analysis showed that the maximum nitrogen and carbon concentrations in the nitrocarburised S-phase layer occur at different depths from the surface. The nitrocarburised layers have not only high hardness like the nitrided layer, but also high thickness and gradually reduced hardness profile like the carburised layer. [Copyright &y& Elsevier]
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.