7 results on '"Yan, Dong‐Ying"'
Search Results
2. The Role of Autophagy in Manganese-Induced Neurotoxicity.
- Author
-
Yan, Dong-Ying and Xu, Bin
- Subjects
NEUROTOXICOLOGY ,CENTRAL nervous system ,WATER pollution ,NEURONS ,ENDOPLASMIC reticulum - Abstract
Manganese (Mn), an essential micronutrient, acts as a cofactor for multiple enzymes. Epidemiological investigations have shown that an excessive level of Mn is an important environmental factor involved in neurotoxicity. Frequent pollution of air and water by Mn is a serious threat to the health of the population. Overexposure to Mn is particularly detrimental to the central nervous system, leading to symptoms similar to several neurological disorders. Many different mechanisms have been implicated in Mn-induced neurotoxicity, including oxidative/nitrosative stress, toxic protein aggregation, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, dysregulation of autophagy, and the apoptotic cascade, which together promote the progressive neurodegeneration of nerve cells. As a compensatory regulatory mechanism, autophagy plays dual roles in various biological activities under pathological stress conditions. Dysregulation of autophagy is involved in the development of neurodegenerative disorders, with recent emerging evidence indicating a strong, complex relationship between autophagy and Mn-induced neurotoxicity. This review discusses the connection between autophagy and Mn-induced neurotoxicity, especially alpha-synuclein oligomerization, ER stress, and aberrated protein S-nitrosylation, which will provide new insights to profoundly explore the precise mechanisms of Mn-induced neurotoxicity. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
3. Manganese activates autophagy to alleviate endoplasmic reticulum stress–induced apoptosis via PERK pathway.
- Author
-
Liu, Chang, Yan, Dong‐Ying, Wang, Can, Ma, Zhuo, Deng, Yu, Liu, Wei, and Xu, Bin
- Subjects
ENDOPLASMIC reticulum ,MANGANESE ,APOPTOSIS ,PROTEIN kinases ,PROTEIN expression ,AUTOPHAGY - Abstract
Overexposure to manganese (Mn) is neurotoxic. Our previous research has demonstrated that the interaction of endoplasmic reticulum (ER) stress and autophagy participates in the early stage of Mn‐mediated neurotoxicity in mouse. However, the mechanisms of ER stress signalling pathways in the initiation of autophagy remain confused. In the current study, we first validated that ER stress–mediated cell apoptosis is accompanied by autophagy in SH‐SY5Y cells. Then, we found that inhibiting ER stress with 4‐phenylbutyrate (4‐PBA) decreased ER stress–related protein expression and reduced cell apoptosis, whereas blocking autophagy with 3‐methyladenine (3‐MA) increased cell apoptosis. These data indicate that protective autophagy was activated to alleviate ER stress–mediated apoptosis. Knockdown of the protein kinase RNA‐like ER kinase (PERK) gene inhibited Mn‐induced autophagy and weakened the interaction between ATF4 and the LC3 promoter. Our results reveal a novel molecular mechanism in which ER stress may regulate autophagy via the PERK/eIF2α/ATF4 signalling pathway. Additionally, Mn may activate protective autophagy to alleviate ER stress–mediated apoptosis via the PERK/eIF2α/ATF4 signalling pathway in SH‐SY5Y cells. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
4. The role S-nitrosylation in manganese-induced autophagy dysregulation in SH-SY5Y cells.
- Author
-
Ma, Zhuo, Wang, Can, Liu, Chang, Yan, Dong‐Ying, Deng, Yu, Liu, Wei, Yang, Tian‐Yao, Xu, Zhao‐Fa, and Xu, Bin
- Subjects
AUTOPHAGY ,MANGANESE ,NEUROTOXICOLOGY ,NITROSYLATION ,B cell lymphoma - Abstract
Overexposure to manganese (Mn) has been known to induce nitrosative stress. The dysregulation of autophagy has implicated in nitric oxide (NO) bioactivity alterations. However, the mechanism of Mn-induced autophagic dysregulation is unclear. The protein of Bcl-2 was considered as a key role that could participate to the autophagy signaling regulation. To further explore whether S-nitrosylation of Bcl-2 involved in Mn-induced autophagy dysregulation, we treated human neuroblastoma (SH-SY5Y) cells with Mn and pretreated cells with 1400 W, a selective iNOS inhibitor. After cells were treated with 400 μM Mn for 24 h, there were significant increases in production of NO, inducible NO synthase (iNOS) activity, the mRNA and protein expressions of iNOS. Interestingly, autophagy was activated after cells were treated with Mn for 0-12 h; while the degradation process of autophagy-lysosome pathway was blocked after cells were treated with Mn for 24 h. Moreover, S-nitrosylated JNK and Bcl-2 also increased and phospho-JNK and phospho-Bcl-2 reduced in Mn-treated cells. Then, the affinity between Bcl-2 and Beclin-1 increased significantly in Mn-treated cells. We used the 1400 W to neutralize Mn-induced nitrosative stress. The results showed that S-nitrosylated JNK and Bcl-2 reduced while their phosphorylation were recovered to some extent. The findings revealed that NO-mediated S-nitrosylation of Bcl-2 directly affected the interaction between Beclin-1 and Bcl-2 leading to autophagy inhibition. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
5. IRE1 signaling pathway mediates protective autophagic response against manganese-induced neuronal apoptosis in vivo and in vitro.
- Author
-
Liu, Chang, Yan, Dong-Ying, Wang, Can, Ma, Zhuo, Deng, Yu, Liu, Wei, and Xu, Bin
- Abstract
Overexposure to manganese (Mn) can result in neurotoxicity and is associated with manganism, a Parkinson's-like neurological disorder. In addition, Mn can induce endoplasmic reticulum (ER) stress and autophagy. In this study, we used C57BL/6 mice to establish a model of manganism and found that Mn could induce cell injury. Our results also showed that Mn could initiate the unfolded protein response (UPR) signaling and autophagy, via initiation of the UPR signaling occurring earlier than autophagy. We further investigated the intrinsic relationship between the endoplasmic reticulum to nucleus 1(ERN1, also known as inositol requiring enzyme 1, IRE1) signaling pathway and autophagy induction in SH-SY5Y cells exposed to Mn. Our results revealed that autophagy activation was a protective response in Mn-induced toxicity. Additionally, we found that Jun N-terminal kinase (JNK) inhibition downregulated autophagy and interaction of c-Jun with the Beclin1 promoter. In addition, knockdown of IRE1 with the LV-IRE1 shRNA suppressed the expression of IRE1, TRAF2, p-ASK1, and p-JNK in Mn-treated SH-SY5Y cells. Furthermore, the expression of proteins associated with ASK1-TRAF2 complex formation and autophagy activation were reversed by the LV-IRE1 shRNA. These findings suggest that IRE1 was involved in the activation of JNK through the formation of the ASK1-TRAF2 complex, and JNK activation led to the induction of autophagy, which required Beclin1 transcription by c-Jun. In this study, we demonstrated that the IRE1 signaling pathway mediated the activation of JNK signaling via the formation of the ASK1-TRAF2 complex which could initiate autophagy and the protein c-Jun which regulates Beclin1 transcription in Mn-induced neurotoxicity. Unlabelled Image • Mn could induce unfolded protein response (UPR) and autophagy. • Prolonged ER stress could induce cell-death program through apoptosis. • IRE1 signaling pathway triggered protective autophagy. • JNK signaling pathway participated in the regulation of Beclin1 transcription. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
6. Alpha-Synuclein and Calpains Disrupt SNARE-Mediated Synaptic Vesicle Fusion During Manganese Exposure in SH-SY5Y Cells.
- Author
-
Wang, Can, Ma, Zhuo, Yan, Dong-Ying, Liu, Chang, Deng, Yu, Liu, Wei, Xu, Zhao-Fa, and Xu, Bin
- Subjects
SYNUCLEINS ,N-ethylmaleimide sensitive factor ,SYNAPTIC vesicles ,LENTIVIRUSES ,MANGANESE - Abstract
Synaptic vesicle fusion is mediated by an assembly of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs), composed of syntaxin 1, soluble NSF-attachment protein (SNAP)-25, and synaptobrevin-2/VAMP-2. Previous studies have suggested that over-exposure to manganese (Mn) could disrupt synaptic vesicle fusion by influencing SNARE complex formation, both in vitro and in vivo. However, the mechanisms underlying this effect remain unclear. Here we employed calpeptin, an inhibitor of calpains, along with a lentivirus vector containing alpha-synuclein (α-Syn) shRNA, to examine whether specific SNAP-25 cleavage and the over-expression of α-Syn disturbed the formation of the SNARE complex in SH-SY5Y cells. After cells were treated with Mn for 24 h, fragments of SNAP-25-N-terminal protein began to appear; however, this effect was reduced in the group of cells which were pre-treated with calpeptin. FM1-43-labeled synaptic vesicle fusion decreased with Mn treatment, which was consistent with the formation of SNARE complexes. The interaction of VAMP-2 and α-Syn increased significantly in normal cells in response to 100 μM Mn treatment, but decreased in LV-α-Syn shRNA cells treated with 100 μM Mn; similar results were observed in terms of the formation of SNARE complexes and FM1-43-labeled synaptic vesicle fusion. Our data suggested that Mn treatment could increase [Ca
2+ ]i , leading to abnormally excessive calpains activity, which disrupted the SNARE complex by cleaving SNAP-25. Our data also provided convincing evidence that Mn could induce the over-expression of α-Syn; when combined with VAMP-2, α-Syn prevented VAMP-2 from joining the SNARE complex cycle. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
7. Manganese induces autophagy dysregulation: The role of S-nitrosylation in regulating autophagy related proteins in vivo and in vitro.
- Author
-
Ma, Zhuo, Wang, Can, Liu, Chang, Yan, Dong-Ying, Tan, Xuan, Liu, Kuan, Jing, Meng-Jiao, Deng, Yu, Liu, Wei, and Xu, Bin
- Abstract
Exposure to excess levels of manganese (Mn) may lead to nitrosative stress and neurotoxic effects on the central nervous system (CNS). The dysfunction of autophagy correlates with Mn-induced nitrosative stress; however, the exact mechanism of Mn-mediated autophagy dysfunction is still unclear. Three S-nitrosylated target proteins, namely, JNK, Bcl-2, and IKKβ, were classified as the pivotal signaling pathway mediators that could play a role in the regulation of autophagy. To reveal whether these three proteins were involved in Mn-mediated autophagy dysregulation, we studied the effects of Mn on C57/BL6 mice and human neuroblastoma cells. Exposing the mice or cells, to 300 μmol/kg or 200 μM Mn, inhibited the degradation system of the autophagy-lysosome pathway. Additionally, in Mn-treated mice or cells, S-nitrosylated JNK, Bcl-2, and IKKβ increased while the level of their phosphorylation reduced. The interaction of Beclin1 and Bcl-2 significantly increased in response to 200 μM Mn, whereas the decrease in phosphorylation of AMPK activated the mTOR pathway. We then used 20 μM 1400 W, an iNOS-specific inhibitor, to neutralize the nitrosative stress induced by Mn. Our results show that 1400 W reduced the S-nitrosylated JNK, Bcl-2, and Ikkβ and relieved their downstream signaling molecular functions. Moreover, pretreatment with 20 μM 1400 W alleviated Mn-induced autophagic dysregulation and nerve cell injury. These findings revealed that S-nitrosylated JNK, Bcl-2, and IKKβ are crucial signaling molecules in the Mn-mediated autophagic dysfunction. Unlabelled Image • Mn-induced nitrosative stress resulted in autophagic dysregulation. • S-nitrosylated Bcl-2 increased the interaction of Beclin1 with Bcl-2. • S-nitrosylated Ikkβ disturbed autophagy by Ikkβ/AMPK/mTOR pathway. • 1400 W could relieve Mn-induced autophagic dysregulation and cell injury. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.