1. Brain-wide connectivity map of mouse thermosensory cortices.
- Author
-
Bokiniec P, Whitmire CJ, Leva TM, and Poulet JFA
- Subjects
- Mice, Animals, Neural Pathways physiology, Brain Mapping, Brain, Somatosensory Cortex physiology, Thalamus physiology, Neurons
- Abstract
In the thermal system, skin cooling is represented in the primary somatosensory cortex (S1) and the posterior insular cortex (pIC). Whether S1 and pIC are nodes in anatomically separate or overlapping thermal sensorimotor pathways is unclear, as the brain-wide connectivity of the thermal system has not been mapped. We address this using functionally targeted, dual injections of anterograde viruses or retrograde tracers into the forelimb representation of S1 (fS1) and pIC (fpIC). Our data show that inputs to fS1 and fpIC originate from separate neuronal populations, supporting the existence of parallel input pathways. Outputs from fS1 and fpIC are more widespread than their inputs, sharing a number of cortical and subcortical targets. While, axonal projections were separable, they were more overlapping than the clusters of input cells. In both fS1 and fpIC circuits, there was a high degree of reciprocal connectivity with thalamic and cortical regions, but unidirectional output to the midbrain and hindbrain. Notably, fpIC showed connectivity with regions associated with thermal processing. Together, these data indicate that cutaneous thermal information is routed to the cortex via parallel circuits and is forwarded to overlapping downstream regions for the binding of somatosensory percepts and integration with ongoing behavior., (© The Author(s) 2022. Published by Oxford University Press.)
- Published
- 2023
- Full Text
- View/download PDF