1. Mating Behavioral Function of Preoptic Galanin Neurons Is Shared between Fish with Alternative Male Reproductive Tactics and Tetrapods.
- Author
-
Tripp JA, Salas-Allende I, Makowski A, and Bass AH
- Subjects
- Animals, Batrachoidiformes anatomy & histology, Courtship, Female, Male, Mammals physiology, Nesting Behavior physiology, Phenotype, Preoptic Area cytology, Species Specificity, Territoriality, Vocalization, Animal physiology, Batrachoidiformes physiology, Galanin physiology, Neurons physiology, Preoptic Area physiology, Sexual Behavior, Animal physiology
- Abstract
Understanding the contribution of neuropeptide-containing neurons to variation in social behavior remains critically important. Galanin has gained increased attention because of the demonstration that galanin neurons in the preoptic area (POA) promote mating and parental care in mammals. How widespread these mechanisms are among vertebrates essentially remains unexplored, especially among teleost fishes, which comprise nearly one-half of living vertebrate species. Teleosts with alternative reproductive tactics exhibit stereotyped patterns of social behavior that diverge widely between individuals within a sex. This includes midshipman that have two male morphs. Type I males mate using either acoustic courtship to attract females to enter a nest they guard or cuckoldry during which they steal fertilizations from a nest-holding male using a sneak or satellite spawning tactic, whereas type II males only cuckold. Using the neural activity marker phospho-S6, we show increased galanin neuron activation in courting type I males during mating that is not explained by their courtship vocalizations, parental care of eggs, or nest defense against cuckolders. This increase is not observed during mating in cuckolders of either morph or females (none of which show parental care). Together with their role in mating in male mammals, the results demonstrate an unexpectedly specific and deep-rooted, phylogenetically shared behavioral function for POA galanin neurons. The results also point to galanin-dependent circuitry as a potential substrate for the evolution of divergent phenotypes within one sex and provide new functional insights into how POA populations in teleosts compare to the POA and anterior hypothalamus of tetrapods. SIGNIFICANCE STATEMENT Studies of neuropeptide regulation of vertebrate social behavior have mainly focused on the vasopressin-oxytocin family. Recently, galanin has received attention as a regulator of social behavior largely because of studies demonstrating that galanin neurons in the preoptic area (POA) promote mating and parental care in mammals. Species with alternative reproductive tactics (ARTs) exhibit robust, consistent differences in behavioral phenotypes between individuals within a sex. Taking advantage of this trait, we show POA galanin neurons are specifically active during mating in one of two male reproductive tactics, but not other mating-related behaviors in a fish with ARTs. The results demonstrate a deep, phylogenetically shared role for POA galanin neurons in reproductive-related social behaviors with implications for the evolution of ARTs., (Copyright © 2020 the authors.)
- Published
- 2020
- Full Text
- View/download PDF