1. Peptide 19 in the rat superior cervical ganglion.
- Author
-
Ichikawa H, Terayama R, Yamaai T, and Sugimoto T
- Subjects
- Animals, Cell Size, Colchicine pharmacology, Face, Immunohistochemistry, Male, Masseter Muscle innervation, NADPH Dehydrogenase metabolism, Neurons metabolism, Neuropeptide Y metabolism, Rats, Rats, Sprague-Dawley, Skin innervation, Submandibular Gland innervation, Nerve Tissue Proteins metabolism, Peptides metabolism, Superior Cervical Ganglion metabolism
- Abstract
Peptide 19 is a 7.6 kDa polypeptide which can bind to calmodulin and inhibit calcium-calmodulin signaling. In this study, peptide 19-immunoreactivity was examined in the rat superior cervical ganglion. In the ganglion, 54.8% of postganglionic sympathetic neuron profiles were immunoreactive for peptide 19. These neuron profiles were small- to medium-sized and measured 87-845 microm(2) (mean+/-SD = 343+/-111 microm(2)). Double immunofluorescence method revealed that 99.9% of peptide 19-containing neurons had neuropeptide Y in the superior cervical ganglion. Retrograde neuronal tracing and immunohistochemical studies also demonstrated that peptide 19 was common in postganglionic sympathetic neurons which innervated the facial skin and masseter but not the submandibular gland; 55.6% and 75.2% of cutaneous and muscular neuron profiles, respectively, contained peptide 19. Only 9.8% of glandular neurons were immunoreactive for peptide 19. These findings indicate that the content of peptide 19 in superior cervical ganglion neurons depends on their cell sizes and peripheral projections. On the other hand, colchicine injection into the superior cervical ganglion decreased the number of peptide 19-positive neurons (30.7%) compared to saline injection (53.3%). In contrast, the treatment induced nicotine adenine dinucleotide phosphate diaphorase activity in 12.7% of postganglionic sympathetic neurons. Double stain demonstrated that 56.3% of nicotine adenine dinucleotide phosphate diaphorase-positive neurons co-expressed peptide 19. These findings indicate that colchicine treatment causes decrease of peptide 19 expression and increase of nitric oxide synthase activity.
- Published
- 2009
- Full Text
- View/download PDF