1. Semaphorin-Plexin Signaling: From Axonal Guidance to a New X-Linked Intellectual Disability Syndrome.
- Author
-
Steele JL, Morrow MM, Sarnat HB, Alkhunaizi E, Brandt T, Chitayat DA, DeFilippo CP, Douglas GV, Dubbs HA, Elloumi HZ, Glassford MR, Hannibal MC, Héron B, Kim LE, Marco EJ, Mignot C, Monaghan KG, Myers KA, Parikh S, Quinonez SC, Rajabi F, Shankar SP, Shinawi MS, van de Kamp JJP, Veerapandiyan A, Waldman AT, and Graf WD
- Subjects
- Adolescent, Adult, Autism Spectrum Disorder physiopathology, Child, Child, Preschool, Genetic Association Studies, Humans, Intellectual Disability physiopathology, Male, Signal Transduction physiology, Young Adult, Autism Spectrum Disorder genetics, Cell Adhesion Molecules physiology, Intellectual Disability genetics, Nerve Tissue Proteins physiology, Receptors, Cell Surface genetics, Semaphorins physiology
- Abstract
Background: Semaphorins and plexins are ligands and cell surface receptors that regulate multiple neurodevelopmental processes such as axonal growth and guidance. PLXNA3 is a plexin gene located on the X chromosome that encodes the most widely expressed plexin receptor in fetal brain, plexin-A3. Plexin-A3 knockout mice demonstrate its role in semaphorin signaling in vivo. The clinical manifestations of semaphorin/plexin neurodevelopmental disorders have been less widely explored. This study describes the neurological and neurodevelopmental phenotypes of boys with maternally inherited hemizygous PLXNA3 variants., Methods: Data-sharing through GeneDx and GeneMatcher allowed identification of individuals with autism or intellectual disabilities (autism/ID) and hemizygous PLXNA3 variants in collaboration with their physicians and genetic counselors, who completed questionnaires about their patients. In silico analyses predicted pathogenicity for each PLXNA3 variant., Results: We assessed 14 boys (mean age, 10.7 [range 2 to 25] years) with maternally inherited hemizygous PLXNA3 variants and autism/ID ranging from mild to severe. Other findings included fine motor dyspraxia (92%), attention-deficit/hyperactivity traits, and aggressive behaviors (63%). Six patients (43%) had seizures. Thirteen boys (93%) with PLXNA3 variants showed novel or very low allele frequencies and probable damaging/disease-causing pathogenicity in one or more predictors. We found a genotype-phenotype correlation between PLXNA3 cytoplasmic domain variants (exons 22 to 32) and more severe neurodevelopmental disorder phenotypes (P < 0.05)., Conclusions: We report 14 boys with maternally inherited, hemizygous PLXNA3 variants and a range of neurodevelopmental disorders suggesting a novel X-linked intellectual disability syndrome. Greater understanding of PLXNA3 variant pathogenicity in humans will require additional clinical, computational, and experimental validation., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF