1. The RareCyte® platform for next-generation analysis of circulating tumor cells.
- Author
-
Kaldjian EP, Ramirez AB, Sun Y, Campton DE, Werbin JL, Varshavskaya P, Quarre S, George T, Madan A, Blau CA, and Seubert R
- Subjects
- Biomarkers, Tumor genetics, Cell Count methods, Cell Line, Tumor, Cell Separation methods, Fluorescence, Humans, Liquid Biopsy methods, Neoplasms genetics, Single-Cell Analysis methods, Neoplasms pathology, Neoplastic Cells, Circulating pathology
- Abstract
Circulating tumor cells (CTCs) can reliably be identified in cancer patients and are associated with clinical outcome. Next-generation "liquid biopsy" technologies will expand CTC diagnostic investigation to include phenotypic characterization and single-cell molecular analysis. We describe here a rare cell analysis platform designed to comprehensively collect and identify CTCs, enable multi-parameter assessment of individual CTCs, and retrieve single cells for molecular analysis. The platform has the following four integrated components: 1) density-based separation of the CTC-containing blood fraction and sample deposition onto microscope slides; 2) automated multiparameter fluorescence staining; 3) image scanning, analysis, and review; and 4) mechanical CTC retrieval. The open platform utilizes six fluorescence channels, of which four channels are used to identify CTC and two channels are available for investigational biomarkers; a prototype assay that allows three investigational biomarker channels has been developed. Single-cell retrieval from fixed slides is compatible with whole genome amplification methods for genomic analysis. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry., (© 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.)
- Published
- 2018
- Full Text
- View/download PDF