Kroz povijest bili smo svjedoci nekoliko tehnoloških supernova. Kroz prošlo stoljeće jedna od tih, možemo reći najpoznatijih i najraširenijih, bila je i izum mobitela. Kako je vrijeme odmicalo, proizvođači su osim utrke jedni s drugima, vodili i utrku s vremenom. Modeli su se lansirali sve češće, bili su boljih performansi, ali i većih dimenzija. Napretkom tehnologije trend porasta veličine se uspio preokrenuti. Sličnu situaciju već smo doživjeli i sa računalima. Sjetimo se primjera IBM-a 360 koji je, primjerice, korišten u NASA-inim misijama - računalo je bilo veličine jedne sobe. U današnje vrijeme izrazitih tehnoloških promjena i računalnog napretka svjedoci smo sve veće optimizacije. S jedne strane imamo velika poboljšanja u izvedbi računala i njihovih performansi, a s druge strane izazov da u isto vrijeme to postignemo na što manjoj elektronskoj pločici – npr. veličine ljudske šake.Kako vrijeme odmiče, imamo sve veći interes za računala. Nastavnici fizike (ali i ostalih predmeta) dužni su pratiti tehnološke promjene te približiti fizikalne koncepte pomoću računala na sve dostupne načine, te konstantno osmišljavati nove. Iste misli vodile su i izumitelje računala Raspberry Pi (RPi) kojima ćemo se baviti u ovom radu. U njemu, nakon kratkog uvoda o samom računalu Raspberry Pi, dano je nekoliko osnovnih načela koja bi se trebalo pridržavati kako bi uspješno integrirali računalo u nastavu. U glavnom dijelu rada razraditi ćemo (nekoliko) primjera mogućnosti primjene RPi uređaja u nastavi, i na kraju izvesti zaključak koliko je jednostavno realizirati ovaj princip rada u učionicama, te koje pozitivne učinke na kompetencije korisnika on donosi. Throughout history we have witnessed several technological supernovas. Through the past century one of these, we can say the most famous and the most widespread, was the invention of cell phones. As time went by, the producers, apart from racing with each other, ran the race with time. The models were launched more and more frequently, they had better performance, but also larger dimensions. By advancing technology, the trend in size growth has been reversed. We've already had an analogous situation with computers. Let's remember the examples of IBM 360 that was, for example, used in NASA's missions - the computer was one size of a room. In today's time of marked technological change and computer progress we are witnessing increasing optimization. On the one hand, we have great improvements in computer performance, on the other hand, it is a challenge to attain it at the same time on the smallest electronic board - for example the size of a human hand. As time moves, we have an increasing interest in computers. Physics teachers (as well as teachers of the other subjects) are required to keep track of technological changes and bring physics concepts closer to the computer in all available ways, and constantly devise new ones. The same thoughts also ran by computer inventors of the Raspberry Pi (RPi), which we will deal with in this paper. In it, after a brief introduction to the Raspberry Pi computer itself, there are several basic principles that should be followed to successfully integrate the computer into teaching. In the main part of the paper, we will elaborate (a few) examples of the application of RPi units in teaching, and finally conclude how easy it is to apply this principle in the classroom and what positive effects the user's competences it will bring.