1. New hydrogen-evolution heteronanostructured photocatalysts: Pt-Nb3 O7 (OH) and Cu-Nb3 O7 (OH).
- Author
-
Hmadeh M, Hoepfner V, Larios E, Liao K, Jia J, Jose-Yacaman M, and Ozin GA
- Subjects
- Catalysis, Copper chemistry, Hydrogen chemistry, Nanotubes chemistry, Niobium chemistry, Oxides chemistry, Photochemical Processes, Platinum Compounds chemistry
- Abstract
Nanorods of triniobium hydroxide heptaoxide, Nb3 O7 (OH), were synthesized by means of a hydrothermal method. Subsequently, Pt and CuO nanoparticles were introduced on the surface of Nb3 O7 (OH) nanorods by a microwave-assisted solvothermal nucleation and growth technique. The resulting Pt- and CuO-decorated Nb3 O7 (OH) nanorods demonstrated uniform particle dispersion and were fully characterized by X-ray diffraction, electron microscopy, and spectroscopic analysis. Furthermore, the solar-powered photocatalytic hydrogen production properties of these heteronanostructures were studied. The solar-driven H2 formation rate over Pt-Nb3 O7 (OH) was determined to be 710.4 ± 1.7 μmol g(-1) h(-1) with a quantum efficiency of ϕ=5.40% at λ=380 nm. Interestingly, the as-prepared CuO-Nb3 O7 (OH) heteronanostructure was found to be inactive under solar irradiation during an induction phase, whereupon it undergoes an in situ photoreduction process to form the photocatalytically active Cu-Nb3 O7 (OH). This restructuring process was monitored by an in situ measurement of the time-evolution of the optical absorption spectra. The solar-powered H2 production for the restructured compound was determined to be 290.3 ± 5.1 μmol g(-1) h(-1) ., (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2014
- Full Text
- View/download PDF