1. Bioinspired zwitterionic triblock copolymers designed for colloidal drug delivery: 1 - Synthesis and characterization.
- Author
-
Beck-Broichsitter M
- Subjects
- Phosphorylcholine chemistry, Polymers chemistry, Drug Delivery Systems, Methacrylates chemistry, Nanoparticles
- Abstract
This study describes the synthesis and characterization of triblock copolymers composed of poly[2-(methacryloyloxy)ethyl phosphorylcholine]-block-poly(propylene glycol)-block-poly[2-(methacryloyloxy)ethyl phosphorylcholine] (PMPC-b-PPG-b-PMPC) intended for, but not limited to, applications in colloidal drug delivery. Atom transfer radical polymerization led to a library of well-defined PMPC-b-PPG-b-PMPC triblock copolymers with varying overall molecular weight (ranging from ∼5 to ∼25 kDa) and composition (weight fraction of the hydrophobic PPG block ranged from ∼10 to ∼50 wt%). The properties of the synthesized triblock copolymers were linked to the PPG to bioinspired PMPC block(s) ratio, where the more hydrophilic species showed adequate aqueous solubility, surface activity and biocompatibility (non-toxicity) in in vitro cell culture. Their amphiphilic nature makes them adsorb efficiently onto polymer nanoparticles, what improves colloidal stability under stress conditions and, furthermore, depletes proteins from unwanted adsorption to the underlying surface. The current findings strengthen our insights into structure-function relationships of PMPC-based coatings leading to protecting shells on relevant polymer nanoparticle formulations. PMPC-b-PPG-b-PMPC triblock copolymers composed of a hydrophobic PPG block of 2-4 kDa flanked by two hydrophilic PMPC blocks each of 5-10 kDa seem to be most promising to enhance colloidal drug delivery vehicles., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF