1. Age-dependent changes in ion channel mRNA expression in canine cardiac tissues.
- Author
-
Gönczi M, Birinyi P, Balázs B, Szentandrássy N, Harmati G, Könczei Z, Csernoch L, and Nánási PP
- Subjects
- Animals, Animals, Newborn, Dogs, Heart embryology, Ion Channels genetics, Models, Animal, Gene Expression Regulation, Developmental physiology, Heart growth & development, Ion Channels metabolism, Myocardium metabolism, RNA metabolism
- Abstract
The expression pattern of cardiac ion channels displays marked changes during ontogeny. This study was designed to follow the developmental changes in the expression of major ventricular and atrial ion channel proteins (including both pore forming and regulatory subunits) in canine cardiac tissues at the mRNA level using competitive reverse transcription polymerase chain reaction. Therefore, the corresponding mRNA levels were compared in myocardial tissues excised from embryonic (25-60 days of gestation) and adult (2-3 years old) canine hearts. Expression level of Kv4.3, Kv1.4, KChIP2, KvLQT1, and Cav3.2 mRNAs were higher in the adult than in the embryonic hearts, while expression of Nav1.5 and minK mRNAs were higher in the embryonic than in the adult myocardium. No change in Kir2.1, HERG, Kv1.5, and Cav1.2 mRNA was observed during ontogeny. Direction of the developmental change in the mRNA level, determined for any specific channel protein, was identical in the atrial and ventricular samples. The age-dependent increase observed in the expression of Kv4.3, Kv1.4, KChIP2, and KvLQT1 is congruent with the greater repolarization reserve of the adult myocardium, associated with higher densities of Ito and IKs. The results indicate that age-dependent changes in the expression pattern of many ion channels are similar in canine and healthy human myocardium, therefore, canine cardiac muscle can be considered as a good model of studying developmental changes in the human heart.
- Published
- 2012
- Full Text
- View/download PDF