1. Identification of eight-protein biosignature for diagnosis of tuberculosis.
- Author
-
Yang Q, Chen Q, Zhang M, Cai Y, Yang F, Zhang J, Deng G, Ye T, Deng Q, Li G, Zhang H, Yi Y, Huang RP, and Chen X
- Subjects
- Adult, Biomarkers blood, Female, Follow-Up Studies, Humans, Male, Prospective Studies, ROC Curve, Tuberculosis blood, Tuberculosis microbiology, Cytokines blood, Mass Screening methods, Mycobacterium tuberculosis isolation & purification, Tuberculosis diagnosis
- Abstract
Background: Biomarker-based tests for diagnosing TB currently rely on detecting Mycobacterium tuberculosis (Mtb) antigen-specific cellular responses. While this approach can detect Mtb infection, it is not efficient in diagnosing TB, especially for patients who lack aetiological evidence of the disease., Methods: We prospectively enrolled three cohorts for our study for a total of 630 subjects, including 160 individuals to screen protein biomarkers of TB, 368 individuals to establish and test the predictive model and 102 individuals for biomarker validation. Whole blood cultures were stimulated with pooled Mtb-peptides or mitogen, and 640 proteins within the culture supernatant were analysed simultaneously using an antibody-based array. Sixteen candidate biomarkers of TB identified during screening were then developed into a custom multiplexed antibody array for biomarker validation., Results: A two-round screening strategy identified eight-protein biomarkers of TB: I-TAC, I-309, MIG, Granulysin, FAP, MEP1B, Furin and LYVE-1. The sensitivity and specificity of the eight-protein biosignature in diagnosing TB were determined for the training (n=276), test (n=92) and prediction (n=102) cohorts. The training cohort had a 100% specificity (95% CI 98% to 100%) and 100% sensitivity (95% CI 96% to 100%) using a random forest algorithm approach by cross-validation. In the test cohort, the specificity and sensitivity were 83% (95% CI 71% to 91%) and 76% (95% CI 56% to 90%), respectively. In the prediction cohort, the specificity was 84% (95% CI 74% to 92%) and the sensitivity was 75% (95% CI 57% to 89%)., Conclusions: An eight-protein biosignature to diagnose TB in a high-burden TB clinical setting was identified., Competing Interests: Competing interests: HZ, YY and R-PH are employees of RayBiotech Life, a company producing commercial antibody arrays, including the antibody array targeting 640 human proteins that was used in this study. The custom antibody array targeting 16 proteins was also produced by RayBiotech., (© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2020
- Full Text
- View/download PDF