1. Regulation of muscle phosphorylase b kinase activity by inorganic phosphate and calcium ions.
- Author
-
Sacktor B, Wu NC, Lescure O, and Reed WD
- Subjects
- Adenosine Triphosphate metabolism, Animals, Cyclic AMP metabolism, Diptera, Enzyme Activation, Ethylene Glycols metabolism, Glycogen metabolism, Hydrogen-Ion Concentration, Kinetics, Lithium metabolism, Magnesium metabolism, Phosphorylases metabolism, Potassium metabolism, Rabbits, Sodium metabolism, Spectrophotometry, Calcium pharmacology, Muscles enzymology, Phosphates pharmacology, Phosphorylase Kinase metabolism
- Abstract
The regulation of the activity of blowfly flight-muscle phosphorylase b kinase by P(i) and Ca(2+) was studied, and the actions of these effectors on the kinases from insect flight and rabbit leg muscles were compared. Preincubation of blowfly kinase with P(i) increased activity severalfold. The effect was concentration-dependent, with an apparent K(m) of about 20mm, and time-dependent, requiring at least 10min for maximal activation. Neither ATP nor cyclic AMP was needed, suggesting that a protein kinase may not be involved. Maximal activation of the insect kinase required Mg(2+) in addition to P(i). The apparent K(m) for Mg(2+) was 3mm. Rabbit leg-muscle phosphorylase b kinase was slightly inhibited, rather than stimulated, by P(i), and was strongly inhibited by K(+), Na(+) and Li(+). At physiological concentrations, Ca(2+) activated the phosphorylase b kinases from both blowfly flight and rabbit leg muscles. However, the responses to Ca(2+) of the enzymes from the two tissues were different. The mammalian kinase had virtually no activity in the absence of Ca(2+), and showed a large increase in activity over a narrow range of Ca(2+) concentrations. Flight-muscle kinase had appreciable activity in the absence of Ca(2+), and had a smaller increase over a wide range of Ca(2+) concentration. The concentrations of Ca(2+) required for half-activation were 0.1 and 1mum for the blowfly and rabbit enzymes respectively. The pH-activity profiles of the non-activated, phosphate- and Ca(2+)-activated kinase revealed considerable enhancement of activity with little, if any, increase in the ratio of activities at pH6.8 to those at 8.2. These results are discussed in relation to the mechanism coupling contraction to glycogenolysis and to the biochemical distinction between asynchronous and synchronous types of muscle.
- Published
- 1974
- Full Text
- View/download PDF