1. Coordination of motor pools controlling the ankle musculature in adult spinal cats during treadmill walking.
- Author
-
de Guzman CP, Roy RR, Hodgson JA, and Edgerton VR
- Subjects
- Animals, Cats, Electromyography, Female, Hindlimb innervation, Hindlimb physiology, Muscles physiology, Spinal Cord physiology, Decerebrate State physiopathology, Locomotion physiology, Motor Neurons physiology, Muscles innervation, Tarsus, Animal innervation
- Abstract
The coordination of the motor pools of two ankle plantar-flexor, i.e. the soleus (Sol) and medial gastrocnemius (MG), and an ankle dorsiflexor, i.e. the tibialis anterior (TA) was quantified by comparing the EMG amplitude relationships in muscle pairs in normal and trained adult spinalized cats during treadmill walking across a range of relatively slow speeds (0.1 to 1.0 m/s). The effects of increased tactile stimulation or loading on locomotor performance were also studied in the spinal cats. Joint probability density distributions in the spinalized cats showed a low level of MG activation relative to Sol which did not change as speed increased. In general, the coordination between Sol and MG was similar in normal and spinal cats. However, towards the final phase of the extensor burst, the MG EMG amplitude decayed prematurely in spinal cats, particularly at higher speeds. Preferential elevation of MG relative to Sol activity was seen as a result of tactile stimulation. An elevated load resulted in a higher level of MG activation relative to Sol, prolonged MG activity at the end of the extensor burst, and the reduction in the clonic pattern of EMG typical of spinal cats. Spinalized cats showed an increased incidence of Sol-TA coactivation, especially at the higher speeds, due in part to the tonic activity in the TA. However, the overall reciprocal relationship between these antagonists was maintained. This reciprocity was preserved, but the high level of coactivation was unaffected by tactile stimulation. An elevated load, however, resulted in less Sol-TA coactivation. These results suggest that the coordination between synergists (Sol-MG) and between antagonists (Sol-TA and MG-TA), as well as the level of activation are modulated in the adult spinal cat similar to that observed in the normal cat. Further, there are specific types of proprioceptive-cutaneous information that can affect selected phases of the step cycle such that full weight-supporting stepping is significantly improved.
- Published
- 1991
- Full Text
- View/download PDF