1. Alpha actinin is specifically recognized by Multiple Sclerosis autoantibodies isolated using an N-glucosylated peptide epitope.
- Author
-
Pandey S, Dioni I, Lambardi D, Real-Fernandez F, Peroni E, Pacini G, Lolli F, Seraglia R, Papini AM, and Rovero P
- Subjects
- 2',3'-Cyclic-Nucleotide Phosphodiesterases blood, 2',3'-Cyclic-Nucleotide Phosphodiesterases immunology, Actinin blood, Amino Acid Sequence, Animals, Antibodies, Monoclonal blood, Antibodies, Monoclonal immunology, Autoantibodies blood, Autoantigens blood, Brain immunology, Brain metabolism, Carrier Proteins blood, Carrier Proteins immunology, Creatine Kinase, BB Form blood, Creatine Kinase, BB Form immunology, Epitopes blood, Epitopes immunology, Glycosylation, Humans, Microfilament Proteins blood, Microfilament Proteins immunology, Molecular Sequence Data, Multiple Sclerosis blood, Multiple Sclerosis pathology, Nerve Tissue Proteins blood, Peptides blood, Rats, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Tandem Mass Spectrometry, Actinin immunology, Autoantibodies immunology, Autoantigens immunology, Multiple Sclerosis immunology, Nerve Tissue Proteins immunology, Peptides immunology
- Abstract
Sophisticated approaches have recently led to the identification of novel autoantigens associated with Multiple Sclerosis (MuS), e.g. neurofascin, contactin, CNPase, and other T-cell receptor membrane anchored proteins. These putative antigens, although differing from the conventional myelin derivatives, are conceptually based on an animal model of experimental autoimmune encephalomyelitis. In this report we describe the identification of putative antigens based on their recognition by autoantibodies isolated from MuS patient serum. In a previous work from this laboratory we have shown that a peptide probe, named CSF114(Glc), specifically identifies serum autoantibodies in a subset of MuS patients, representing ∼30% of the patient population. The autoantibodies, purified from MuS patients' sera (six), through CSF114(Glc) affinity chromatography, detected three immunoreactive protein bands present in the rat brain. Proteomic analysis of the immunoreactive bands, involving MALDI and MS/MS techniques, revealed the presence of four proteins distinguishable by their mass: alpha fodrin, alpha actinin 1, creatine kinase, and CNPase. The immunoreactive profile of these rat brain proteins was compared with that of commercially available standard proteins by challenging against either CSF114(Glc) purified MuS autoantibodies, or monoclonal antibodies. Further discrimination among the rat brain proteins was provided by the following procedure: whereas monoclonal antibodies recognized all rat brain proteins, isolated MuS specific antibodies recognize only alpha actinin 1 as a putative antigen. In fact, alpha actinin 1 displayed a robust immunoreactive response against all MuS patients' sera examined, whereas the other three bands were not consistently detectable. Thus, alpha actinin 1, a cytoskeleton protein implicated in inflammatory/degenerative autoimmune diseases (lupus nephritis and autoimmune hepatitis) might be regarded as a novel MuS autoantigen, perhaps a prototypic biomarker for the inflammatory/degenerative process typical of the disease.
- Published
- 2013
- Full Text
- View/download PDF