1. Targeting MET transcription as a therapeutic strategy in multiple myeloma.
- Author
-
Phillip CJ, Stellrecht CM, Nimmanapalli R, and Gandhi V
- Subjects
- Antineoplastic Agents pharmacology, Apoptosis drug effects, Flavonoids pharmacology, Humans, Multiple Myeloma genetics, Multiple Myeloma pathology, Phosphorylation drug effects, Piperidines pharmacology, Protein Kinases metabolism, Proto-Oncogene Proteins metabolism, Proto-Oncogene Proteins c-met, RNA Polymerase II genetics, RNA Polymerase II metabolism, RNA, Messenger genetics, RNA, Messenger metabolism, RNA, Small Interfering pharmacology, Receptor Protein-Tyrosine Kinases metabolism, Receptors, Growth Factor metabolism, Tumor Cells, Cultured, Gene Expression Regulation, Neoplastic drug effects, Multiple Myeloma therapy, Proto-Oncogene Proteins genetics, Receptors, Growth Factor genetics, Transcription, Genetic drug effects
- Abstract
Multiple myeloma (MM) is an incurable indolent malignancy with an average lifespan of 3 years, underscoring the need for new therapies. Studies have shown that the receptor MET and its ligand hepatocyte growth factor play an important role in proliferation, migration, adhesion, and survival of MM cells. Hence, an effective way to decrease MET receptor may act as a viable therapeutic option. Since MET mRNA and protein have short half-lives, we hypothesized that transcription inhibitor will reduce MET transcript and protein levels and this will lead to cell death. Pharmacological (flavopiridol) and molecular (shRNA) transcription inhibitor were used to impede formation of MET transcripts. The diminution of global RNA synthesis with flavopiridol was related to phosphorylation status of Ser residues (r (2) = 0.90 and 0.92 for Ser2 and Ser5) on the C-terminal-domain of RNA polymerase II. This was accompanied with a time-dependent decrease in MET transcript, which reached to less than 30% (1 microM) and 10% (3 microM) by 24 h. This decline in transcript level was directly associated with a reduction in MET protein level (r (2) = 0.82) and resulted in cell death. Assessment of MET in MM survival was done by using shRNA targeted towards MET. When cells were infected with shRNA viral construct, there was increased cell death with a decline in MET transcript and protein. Taken together, our study demonstrates that MET plays a critical role in the survival and removal or lowering of MET by flavopiridol or shRNA results in the demise of MM cells.
- Published
- 2009
- Full Text
- View/download PDF