1. Insulin regulates neurovascular coupling through astrocytes
- Author
-
Ana M. Fernandez, Laura Martinez-Rachadell, Marta Navarrete, Julia Pose-Utrilla, Jose Carlos Davila, Jaime Pignatelli, Sonia Diaz-Pacheco, Santiago Guerra-Cantera, Emilia Viedma-Moreno, Rocio Palenzuela, Samuel Ruiz de Martin Esteban, Ricardo Mostany, Cristina Garcia-Caceres, Matthias Tschöp, Teresa Iglesias, Maria L. de Ceballos, Antonia Gutierrez, Ignacio Torres Aleman, Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (España), Junta de Andalucía, European Commission, and Comunidad de Madrid
- Subjects
Mice, Knockout ,Vascular Endothelial Growth Factor A ,insulin ,Multidisciplinary ,neurovascular coupling ,Astrocytes ,Insulin ,Neurovascular Coupling ,astrocytes ,Brain ,Neovascularization, Physiologic ,Receptor, Insulin ,Mice ,Glucose ,Glial Fibrillary Acidic Protein ,Animals ,Reactive Oxygen Species - Abstract
Mice with insulin receptor (IR)-deficient astrocytes (GFAP-IR knockout [KO] mice) show blunted responses to insulin and reduced brain glucose uptake, whereas IRdeficient astrocytes show disturbed mitochondrial responses to glucose. While exploring the functional impact of disturbed mitochondrial function in astrocytes, we observed that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake. Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this leads to stimulation of hypoxia-inducible factor-1¿ and, consequently, of the vascular endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show disturbed brain vascularity and blood flow that is normalized by treatment with the antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normalized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modulating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in neurovascular coupling., We are thankful to M.Garcia and R. Cañadas for technical support. This work was funded by Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) (Instituto de Salud CarlosIII, Spain) to I.T.A., A.G., and T.I.; an Inter-CIBER project (PIE14/00061) to I.T.A.that forms part of the projects PID2019-104376RB-I00 (I.T.A.) and RTI2018-094887-B-I00 (M.N.) funded by MCIN/AEI/10.13039/501100011033; a grant from Junta de Andalucia Consejería de Economía y Conocimiento (P18-RT-2233 to A.G.) cofinanced by Programa Operativo FEDER 2014–2020; a grant from Instituto de Salud Carlos III Spain (cofinanced by FEDER funds from the European Union; PI21/00915 to A.G.); Grant PID2020-115218RB-I00 to T.I. funded by Ministerio de Ciencia e Innovación/Agencia Española de Investigación (MCIN/AEI/10.13039/501100011033); and a grant from Comunidad de Madrid through the European Social Fund (ESF)–financed programme Neurometabolismo-Comunidad de Madrid (NEUROMETAB-CM) (B2017/BMD-3700 to I.T.A.and T.I.). M.N. was also supported by the Spanish Ministry of Science and Innovation (Ramón y Cajal RYC-2016-20414). J.P.-U. was contracted by CIBERNED.
- Published
- 2022