1. Resource-Management Study in HPC Runtime-Stacking Context
- Author
-
Raymond Namyst, Marc Pérache, Arthur Loussert, Julien Jaeger, Patrick Carribault, Benoit Welterlen, DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Bull atos technologies, and Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)
- Subjects
Multi-core processor ,Side effect (computer science) ,Resource (project management) ,Exploit ,Computer science ,Distributed computing ,Memory footprint ,Overhead (computing) ,Context (language use) ,Parallel computing ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Resource management (computing) - Abstract
International audience; With the advent of multicore and manycore processors as building blocks of HPC supercomputers, many applications shift from relying solely on a distributed programming model (e.g., MPI) to mixing distributed and shared-memory models (e.g., MPI+OpenMP), to better exploit shared-memory communications and reduce the overall memory footprint. One side effect of this programming approach is runtime stacking: mixing multiple models involve various runtime libraries to be alive at the same time and to share the underlying computing resources. This paper explores different configurations where this stacking may appear and introduces algorithms to detect the misuse of compute resources when running a hybrid parallel application. We have implemented our algorithms inside a dynamic tool that monitors applications and outputs resource usage to the user. We validated this tool on applications from CORAL benchmarks. This leads to relevant information which can be used to improve runtime placement, and to an average overhead lower than 1% of total execution time.
- Published
- 2017
- Full Text
- View/download PDF