1. Improving visuo-motor learning with cerebellar theta burst stimulation: Behavioral and neurophysiological evidence.
- Author
-
Koch G, Esposito R, Motta C, Casula EP, Di Lorenzo F, Bonnì S, Cinnera AM, Ponzo V, Maiella M, Picazio S, Assogna M, Sallustio F, Caltagirone C, and Pellicciari MC
- Subjects
- Adult, Female, Humans, Male, Young Adult, Adaptation, Physiological physiology, Brain Waves physiology, Cerebellum physiology, Cortical Synchronization physiology, Learning physiology, Motor Cortex physiology, Nerve Net physiology, Psychomotor Performance physiology, Transcranial Magnetic Stimulation
- Abstract
The cerebellum is strongly implicated in learning new motor skills. Theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation, can be used to influence cerebellar activity. Our aim was to explore the potential of cerebellar TBS in modulating visuo-motor adaptation, a form of motor learning, in young healthy subjects. Cerebellar TBS was applied immediately before the learning phase of a visuo-motor adaptation task (VAT), in two different experiments. Firstly, we evaluated the behavioral effects of continuous (cTBS), intermittent (iTBS) or sham TBS on the learning, re-adaptation and de-adaptation phases of VAT. Subsequently, we investigated the changes induced by iTBS or sham TBS on motor cortical activity related to each phase of VAT, as measured by concomitant TMS/EEG recordings. We found that cerebellar TBS induced a robust bidirectional modulation of the VAT performance. More specifically, cerebellar iTBS accelerated visuo-motor adaptation, by speeding up error reduction in response to a novel perturbation. This gain of function was still maintained when the novel acquired motor plan was tested during a subsequent phase of re-adaptation. On the other hand, cerebellar cTBS induced the opposite effect, slowing the rate of error reduction in both learning and re-adaptation phases. Additionally, TMS/EEG recordings showed that cerebellar iTBS induced specific changes of cortical activity in the interconnected motor networks. The improved performance was accompanied by an increase of TMS-evoked cortical activity and a generalized desynchronization of TMS-evoked cortical oscillations. Taken together, our behavioral and neurophysiological findings provide the first-time multimodal evidence of the potential efficacy of cerebellar TBS in improving motor learning, by promoting successful cerebellar-cortical reorganization., Competing Interests: Declaration of competing interest None., (Copyright © 2019. Published by Elsevier Inc.)
- Published
- 2020
- Full Text
- View/download PDF