1. Cortical hemoglobin concentration changes underneath the coil after single-pulse transcranial magnetic stimulation: a near-infrared spectroscopy study.
- Author
-
Furubayashi T, Mochizuki H, Terao Y, Arai N, Hanajima R, Hamada M, Matsumoto H, Nakatani-Enomoto S, Okabe S, Yugeta A, Inomata-Terada S, and Ugawa Y
- Subjects
- Adult, Female, Humans, Male, Middle Aged, Spectroscopy, Near-Infrared, Hemoglobins analysis, Motor Cortex chemistry, Transcranial Magnetic Stimulation
- Abstract
Using near-infrared spectroscopy (NIRS) and multichannel probes, we studied hemoglobin (Hb) concentration changes when single-pulse transcranial magnetic stimulation (TMS) was applied over the left hemisphere primary motor cortex (M1). Seventeen measurement probes were centered over left M1. Subjects were studied in both active and relaxed conditions, with TMS intensity set at 100%, 120%, and 140% of the active motor threshold. The magnetic coils were placed so as to induce anteromedially directed currents in the brain. Hb concentration changes were more prominent at channels over M1 and posterior to it. Importantly, Hb concentration changes at M1 after TMS differed depending on whether the target muscle was in an active or relaxed condition. In the relaxed condition, Hb concentration increased up to 3-6 s after TMS, peaking at ∼6 s, and returned to the baseline. In the active condition, a smaller increase in Hb concentrations continued up to 3-6 s after TMS (early activation), followed by a decrease in Hb concentration from 9 to 12 s after TMS (delayed deactivation). Hb concentration changes in the active condition at higher stimulus intensities were more pronounced at locations posterior to M1 than at M1. We conclude that early activation occurs when M1 is activated transsynaptically. The relatively late deactivation may result from the prolonged inhibition of the cerebral cortex after activation. The posterior-dominant activation at higher intensities in the active condition may result from an additional activation of the sensory cortex due to afferent inputs from muscle contraction evoked by the TMS.
- Published
- 2013
- Full Text
- View/download PDF