1. Performance of cotton expressing Cry1Ac, Cry1F and Vip3Aa19 insecticidal proteins against Helicoverpa armigera, H. zea and their hybrid progeny, and evidence of reduced susceptibility of a field population of H. zea to Cry1 and Vip3Aa in Brazil.
- Author
-
Marques LH, Ishizuka TK, Pereira RR, Istchuk AN, Rossetto J, Moscardini VF, E Silva OANB, Santos AC, Nowatzki T, Dahmer ML, Sethi A, Storer NP, Gontijo PC, Netto JC, Weschenfelder MAG, de Almeida PG, and Bernardi O
- Subjects
- Animals, Humans, Infant, Newborn, Brazil, Zea mays genetics, Endotoxins genetics, Bacterial Proteins genetics, Bacterial Proteins pharmacology, Bacillus thuringiensis Toxins, Hemolysin Proteins genetics, Hemolysin Proteins pharmacology, Larva genetics, Gossypium genetics, Plants, Genetically Modified genetics, Insecticides pharmacology, Moths genetics
- Abstract
The genetically modified cotton DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 expressing Cry1Ac, Cry1F and Vip3Aa19 from Bacillus thuringiensis Berliner (Bt) has been cultivated in Brazil since the 2020/2021 season. Here, we assessed the performance of DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton expressing Cry1Ac, Cry1F and Vip3Aa19 against Helicoverpa armigera (Hübner), Helicoverpa zea (Boddie), and their hybrid progeny. We also carried out evaluations with DAS-21023-5 × DAS-24236-5 cotton containing Cry1Ac and Cry1F. In leaf-disk bioassays, DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 was effective in controlling neonates from laboratory colonies of H. armigera, H. zea and the hybrid progeny (71.9%-100% mortality). On floral bud bioassays using L2 larvae, H. zea presented complete mortality, whereas H. armigera and the hybrid progeny showed <55% mortality. On DAS-21023-5 × DAS-24236-5 cotton, the mortality of H. armigera on leaf-disk and floral buds ranged from 60% to 73%, whereas mortality of hybrids was <46%. This Bt cotton caused complete mortality of H. zea larvae from a laboratory colony in the early growth stages, but mortalities were <55% on advanced growth stages and on floral buds. In field studies conducted from 2014 to 2019, DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton was also effective at protecting plants against H. armigera. In contrast, a population of H. zea collected in western Bahia in 2021/2022 on Bt cotton expressing Cry1 and Vip3Aa proteins, showed 63% mortality after 30 d, with insects developing into fifth and sixth instars, on DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton. We conclude that H. armigera, H. zea, and their hybrid progeny can be managed with DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton; however we found the first evidence in Brazil of a significant reduction in the susceptibility to DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton of a population of H. zea collected from Bt cotton in Bahia in 2021/2022., Competing Interests: The authors have declared that no competing interests exist. Corteva Agriscience provided support in the form of salaries for authors Luiz H. Marques, Tamylin K. Ishizuka, Renata R. Pereira, Ademar N. Istchuk, Jaedino Rossetto, Valeria F. Moscardini, Oscar A. N. B. e Silva, Antonio C. Santos, Timothy Nowatzki, Mark L. Dahmer, Amit Sethi, Nicholas P. Storer, but did not have any additional role in the conduction of field trials, data collection and analysis. The specific role of these authors are articulated in the ’author contributions’ section. This does not alter our adherence to PLOS ONE policies on sharing data and materials., (Copyright: © 2023 Marques et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF