34 results on '"Moore, Sarah"'
Search Results
2. Comparison of the Trapping Efficacy of Locally Modified Gravid Aedes Trap and Autocidal Gravid Ovitrap for the Monitoring and Surveillance of Aedes aegypti Mosquitoes in Tanzania.
- Author
-
Machange, Jane Johnson, Maasayi, Masudi Suleiman, Mundi, John, Moore, Jason, Muganga, Joseph Barnabas, Odufuwa, Olukayode G., Moore, Sarah J., and Tenywa, Frank Chelestino
- Subjects
AEDES aegypti ,AEDES ,MOSQUITO control ,MOSQUITOES ,INSECTICIDE-treated mosquito nets ,MAGIC squares ,MOSQUITO vectors - Abstract
Simple Summary: Mosquito traps are widely used for the monitoring and surveillance of mosquito vectors in many mosquito-borne disease-endemic countries. However, the costs and efficacy of traps remain a great challenge. In this study, we compared the trapping efficacy of locally modified Gravid Aedes Trap (GAT) and Autocidal Gravid Ovitrap (AGO) for dengue vector (Aedes aegypti) in a semi-field and field settings. The GAT was lined with pyrethroid-treated nets as a killing agent, while the AGO adhered with a sticky board to capture mosquitoes. We also compared the locally modified traps baited with either yeast or grass infusion with BG-Sentinel (BGS) with BG lure (a standard trap for capturing Aedes mosquitoes). Our findings showed that the GAT was more efficacious than the AGO in both semi-field and field settings. Additionally, there was no significant difference between yeast-baited and grass-baited GAT traps in capturing mosquitoes, although yeast was easier to use. When compared to a standard trap (BGS), GAT showed no difference in capturing Aedes mosquitoes in a semi-field; however, in the field setting, BGS outperformed the modified GAT. The study assessed the trapping efficacy of locally modified (1) Gravid Aedes Trap (GAT) lined with insecticide-treated net (ITN) as a killing agent and (2) Autocidal Gravid Ovitrap (AGO) with sticky board in the semi-field system (SFS) and field setting. Fully balanced Latin square experiments were conducted to compare GAT lined with ITN vs. AGO, both with either yeast or grass infusion. Biogent-Sentinel (BGS) with BG-Lure and no CO
2 was used as a standard trap for Aedes mosquitoes. In the SFS, GAT outperformed AGO in collecting both nulliparous (65% vs. 49%, OR = 2.22, [95% CI: 1.89–2.60], p < 0.001) and gravid mosquitoes (73% vs. 64%, OR = 1.67, [95% CI: 1.41–1.97], p < 0.001). Similar differences were observed in the field. Yeast and grass infusion did not significantly differ in trapping gravid mosquitoes (OR = 0.91, [95% CI: 0.77–1.07], p = 0.250). The use of ITN improved mosquito recapture from 11% to 70% in the SFS. The same trend was observed in the field. Yeast was chosen for further evaluation in the optimized GAT due to its convenience and bifenthrin net for its resistance management properties. Mosquito density was collected when using 4× GATs relative to BGS-captured gravid mosquitoes 64 vs. 58 (IRR = 0.82, [95% CI: 0.35–1.95], p = 0.658) and showed no density dependence. Deployment of multiple yeast-baited GAT lined with bifenthrin net is cost-effective (single GAT < $8) compared to other traps such as BGS ($160). [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
3. Complete series method (CSM): a convenient method to reduce daily heterogeneity when evaluating the regeneration time (RT) of insecticide-treated nets (ITNs).
- Author
-
Lugenge, Aidi Galus, Odufuwa, Olukayode G., Mseti, Jilly Jackson, Swai, Johnson Kyeba, Skovmand, Ole, and Moore, Sarah Jane
- Subjects
INSECTICIDE-treated mosquito nets ,ANOPHELES arabiensis ,MOSQUITOES ,HETEROGENEITY ,CYPERMETHRIN ,LONGITUDINAL method - Abstract
Background: "Regeneration time" (RT) denotes the time required to obtain a stable mortality rate for mosquitoes exposed to insecticide-treated nets (ITNs) after three consecutive washes of a net in a day. The RT informs the wash interval used to artificially age ITNs to simulate their lifetime performance under user conditions (20 washes). RT was estimated following World Health Organization (WHO) longitudinal method (LM) procedures. Longitudinal evaluation may introduce heterogeneity due to mosquito batch variability, complicating RT determination. To overcome this, nets at each stage of regeneration (i.e., 1, 2, 3, 5 and 7 days post wash) were prepared in advance and refrigerated; then, a complete regeneration series was tested with a single mosquito batch on 1 testing day, completing four series over 4 days. This study compared the complete series method (CSM) against the LM. Methods: The overall heterogeneity in the methods for estimating RT of one incorporated alpha-cypermethrin and piperonyl butoxide (PBO) and one incorporated permethrin with PBO ITNs was determined using laboratory-reared resistant Anopheles arabiensis under standard laboratory conditions. LM methods and CSM were compared in two experiments with refrigerated nets acclimated for (i) 2 h (test 1) and (ii) 3 h (test 2). Four regeneration replicates per day were tested per ITN product with 50 mosquitoes exposed per replicate (equivalent sample size to LM). The heterogeneity from these methods was compared descriptively. Results: The intra-method variability for unwashed pieces was minimal, with variance of 1.26 for CSM and 1.18 for LM. For unwashed nets, LM had substantially greater variance and ratio of LM:CSM was 2.66 in test 1 and 2.49 in test 2. The magnitude of mortality measured in bioassays depended on sample acclimation after refrigeration. Conclusions: The CSM is a convenient method for determining the regeneration times. ITNs are prepared in advance, reducing pressure to prepare all samples to start on a single day. A complete regeneration series of samples is removed from the refrigerator, defrosted and evaluated on a single day with one mosquito batch reducing the influence of mosquito batch heterogeneity on results. Replicates can be conducted over several days but do not have to be conducted on consecutive days, allowing easy facility scheduling. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Temperature, mosquito feeding status and mosquito density influence the measured bio-efficacy of insecticide-treated nets in cone assays.
- Author
-
Mseti, Jilly Jackson, Maasayi, Masudi Suleiman, Lugenge, Aidi Galus, Mpelepele, Ahmadi B., Kibondo, Ummi Abdul, Tenywa, Frank Chelestino, Odufuwa, Olukayode G., Tambwe, Mgeni Mohamed, and Moore, Sarah Jane
- Subjects
INSECTICIDE-treated mosquito nets ,MOSQUITOES ,ANOPHELES ,DENSITY ,COMMERCIAL product testing - Abstract
Background: The WHO cone bioassay is routinely used to evaluate the bioefficacy of insecticide-treated nets (ITNs) for product pre-qualification and confirmation of continued ITN performance during operational monitoring. Despite its standardized nature, variability is often observed between tests. We investigated the influence of temperature in the testing environment, mosquito feeding status and mosquito density on cone bioassay results. Methods: Cone bioassays were conducted on MAGNet (alphacypermethrin) and Veeralin (alphacypermethrin and piperonyl butoxide (PBO)) ITNs, using laboratory-reared pyrethroid-resistant Anopheles funestus sensu stricto (FUMOZ strain) mosquitoes. Three experiments were conducted using standard cone bioassays following WHO-recommended test parameters, with one variable changed in each bioassay: (i) environmental temperature during exposure: 22–23 °C, 26–27 °C, 29–30 °C and 32–33 °C; (ii) feeding regimen before exposure: sugar starved for 6 h, blood-fed or sugar-fed; and (iii) mosquito density per cone: 5, 10, 15 and 20 mosquitoes. For each test, 15 net samples per treatment arm were tested with four cones per sample (N = 60). Mortality after 24, 48 and 72 h post-exposure to ITNs was recorded. Results: There was a notable influence of temperature, feeding status and mosquito density on An. funestus mortality for both types of ITNs. Mortality at 24 h post-exposure was significantly higher at 32–33 °C than at 26–27 °C for both the MAGNet [19.33% vs 7%; odds ratio (OR): 3.96, 95% confidence interval (CI): 1.99–7.87, P < 0.001] and Veeralin (91% vs 47.33%; OR: 22.20, 95% CI: 11.45–43.05, P < 0.001) ITNs. Mosquito feeding status influenced the observed mortality. Relative to sugar-fed mosquitoes, The MAGNet ITNs induced higher mortality among blood-fed mosquitoes (7% vs 3%; OR: 2.23, 95% CI: 0.94–5.27, P = 0.068) and significantly higher mortality among starved mosquitoes (8% vs 3%, OR: 2.88, 95% CI: 1.25–6.63, P = 0.013); in comparison, the Veeralin ITNs showed significantly lower mortality among blood-fed mosquitoes (43% vs 57%; OR: 0.56, 95% CI: 0.38–0.81, P = 0.002) and no difference for starved mosquitoes (58% vs 57%; OR: 1.05, 95% CI: 0.72–1.51, P = 0.816). Mortality significantly increased with increasing mosquito density for both the MAGNet (e.g. 5 vs 10 mosquitoes: 7% vs 12%; OR: 1.81, 95% CI: 1.03–3.20, P = 0.040) and Veeralin (e.g. 5 vs 10 mosquitoes: 58% vs 71%; OR 2.06, 95% CI: 1.24–3.42, P = 0.005) ITNs. Conclusions: The results of this study highlight that the testing parameters temperature, feeding status and mosquito density significantly influence the mortality measured in cone bioassays. Careful adherence to testing parameters outlined in WHO ITN testing guidelines will likely improve the repeatability of studies within and between product testing facilities. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Time of exposure and assessment influence the mortality induced by insecticides against metabolic resistant mosquitoes.
- Author
-
Odufuwa, Olukayode G., Bradley, John, Ngonyani, Safina, Mpelepele, Ahmadi Bakari, Matanila, Isaya, Muganga, Joseph B., Bosselmann, Rune, Skovmand, Ole, Mboma, Zawadi Mageni, and Moore, Sarah Jane
- Subjects
MOSQUITOES ,INSECTICIDES ,INSECTICIDE-treated mosquito nets ,DELTAMETHRIN ,PYRETHROIDS - Abstract
Background: Increasing metabolic resistance in malaria vector mosquitoes resulted in the development of insecticide-treated nets (ITNs) with active ingredients (AI) that target them. Bioassays that accurately measure the mortality induced by these AIs on ITNs are needed. Mosquito metabolic enzyme expression follows a circadian rhythm. Thus, this study assessed (i) influence of the time of day of mosquito exposure and (ii) timing of assessment of mortality post exposure (24 and 72 h) to ITNs against vectors that are susceptible to pyrethroids and those with metabolic and knockdown resistance mechanisms. Methods: Two cone bioassay experiments were conducted following World Health Organization (WHO) guidelines. Firstly, on ITNs incorporated with 2 g AI/kg of deltamethrin (DM) alone, or combined with 8 g AI/kg piperonyl butoxide (PBO) synergist, during the day (9:00–14:00 h) and repeated in the evening (18:00–20:00 h). This was followed by a confirmatory experiment during the afternoon (12:00–14:00 h) and repeated in the night (22:00–24:00 h) using mosquitoes unexposed or pre-exposed to PBO for 1 h before exposure to DM ITNs. Each net piece was tested with a minimum of eight cones per time (N = 24). The outcome was mortality after 24 h (M24) or 72 h (M72) of holding. Results: The cone bioassays performed using metabolic resistant mosquitoes during the evening showed significantly lower M24 than those performed in the day for DM: odds ratio (OR) 0.14 [95% confidence interval (CI) 0.06–0.30, p < 0.0001] and DM PBO [OR 0.29 (95% CI 0.18—0.49, p < 0.0001). M72 was higher than M24 for metabolic resistant mosquitoes exposed to DM [OR 1.44 (95% CI 1.09–1.88), p = 0.009] and DM PBO [OR 1.82 (95% CI 1.42–2.34), p < 0.0001]. An influence of hour of experiment and time of assessment was not observed for mosquitoes that had knockdown resistance or that were pyrethroid-susceptible. Conclusions: Time of day of experiment and hour of assessment of delayed mortality after exposure of mosquitoes are important considerations in evaluating insecticides that interact with mosquito metabolism to counter metabolic resistant mosquitoes. This is important when evaluating field-aged ITNs that may have lower concentrations of AI. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Efficacy of the spatial repellent product Mosquito Shield™ against wild pyrethroid-resistant Anopheles arabiensis in south-eastern Tanzania.
- Author
-
Swai, Johnson Kyeba, Soto, Alina Celest, Ntabaliba, Watson Samuel, Kibondo, Ummi Abdul, Ngonyani, Hassan Ahamad, Mseka, Antony Pius, Ortiz, Anthony, Chura, Madeleine Rose, Mascari, Thomas Michael, and Moore, Sarah Jane
- Subjects
ANOPHELES arabiensis ,MOSQUITOES ,REPELLENTS ,ESTIMATION theory ,MALARIA prevention - Abstract
Background: Spatial repellents that create airborne concentrations of an active ingredient (AI) within a space offer a scalable solution to further reduce transmission of malaria, by disrupting mosquito behaviours in ways that ultimately lead to reduced human-vector contact. Passive emanator spatial repellents can protect multiple people within the treated space and can last for multiple weeks without the need for daily user touchpoints, making them less intrusive interventions. They may be particularly advantageous in certain use cases where implementation of core tools may be constrained, such as in humanitarian emergencies and among mobile at-risk populations. The purpose of this study was to assess the efficacy of Mosquito Shield™ deployed in experimental huts against wild, free-flying, pyrethroid-resistant Anopheles arabiensis mosquitoes in Tanzania over 1 month. Methods: The efficacy of Mosquito Shield™ transfluthrin spatial repellent in reducing mosquito lands and blood-feeding was evaluated using 24 huts: sixteen huts were allocated to Human Landing Catch (HLC) collections and eight huts to estimating blood-feeding. In both experiments, half of the huts received no intervention (control) while the remaining received the intervention randomly allocated to huts and remained fixed for the study duration. Outcomes measured were mosquito landings, blood-fed, resting and dead mosquitoes. Data were analysed by multilevel mixed effects regression with appropriate dispersion and link function accounting for volunteer, hut and day. Results: Landing inhibition was estimated to be 70% (57–78%) [IRR 0.30 (95% CI 0.22–0.43); p < 0.0001] and blood-feeding inhibition was estimated to be 69% (56–79%) [IRR 0.31 (95% CI 0.21–0.44; p < 0.0001] There was no difference in the protective efficacy estimates of landing and blood-feeding inhibition [IRR 0.98 (95% CI 0.53–1.82; p = 0.958]. Conclusions: This study demonstrated that Mosquito Shield™ was efficacious against a wild pyrethroid-resistant strain of An. arabiensis mosquitoes in Tanzania for up to 1 month and could be used as a complementary or stand-alone tool where gaps in protection offered by core malaria vector control tools exist. HLC is a suitable technique for estimating bite reductions conferred by spatial repellents especially where direct blood-feeding measurements are not practical or are ethically limited. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
7. Sub-lethal exposure to chlorfenapyr reduces the probability of developing Plasmodium falciparum parasites in surviving Anopheles mosquitoes.
- Author
-
Kweyamba, Prisca A., Hofer, Lorenz M., Kibondo, Ummi A., Mwanga, Rehema Y., Sayi, Rajabu M., Matwewe, Fatuma, Austin, James W., Stutz, Susanne, Moore, Sarah J., Müller, Pie, and Tambwe, Mgeni M.
- Subjects
INSECTICIDE resistance ,MOSQUITOES ,REVERSE transcriptase polymerase chain reaction ,ANOPHELES ,PLASMODIUM falciparum ,BLOOD meal as feed ,ANOPHELES gambiae - Abstract
Background: Pyrethroid resistance in the key malaria vectors threatens the success of pyrethroid-treated nets. To overcome pyrethroid resistance, Interceptor
® G2 (IG2), a 'first-in-class' dual insecticidal net that combines alpha-cypermethrin with chlorfenapyr, was developed. Chlorfenapyr is a pro-insecticide, requiring bio-activation by oxidative metabolism within the insect's mitochondria, constituting a mode of action preventing cross-resistance to pyrethroids. Recent epidemiological trials conducted in Benin and Tanzania confirm IG2's public health value in areas with pyrethroid-resistant Anopheles mosquitoes. As chlorfenapyr might also interfere with the metabolic mechanism of the Plasmodium parasite, we hypothesised that chlorfenapyr may provide additional transmission-reducing effects even if a mosquito survives a sub-lethal dose. Methods: We tested the effect of chlorfenapyr netting to reduce Plasmodium falciparum transmission using a modified WHO tunnel test with a dose yielding sub-lethal effects. Pyrethroid-resistant Anopheles gambiae s.s. with L1014F and L1014S knockdown resistance alleles and expression levels of pyrethroid metabolisers CYP6P3, CYP6M2, CYP4G16 and CYP6P1 confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) prior to conducting experiments were exposed to untreated netting and netting treated with 200 mg/m3 chlorfenapyr for 8 h overnight and then fed on gametocytemic blood meals from naturally infected individuals. Prevalence and intensity of oocysts and sporozoites were determined on day 8 and day 16 after feeding. Results: Both prevalence and intensity of P. falciparum infection in the surviving mosquitoes were substantially reduced in the chlorfenapyr-exposed mosquitoes compared to untreated nets. The odds ratios in the prevalence of oocysts and sporozoites were 0.33 (95% confidence interval; 95% CI 0.23–0.46) and 0.43 (95% CI 0.25–0.73), respectively, while only the incidence rate ratio for oocysts was 0.30 (95% CI 0.22–0.41). Conclusion: We demonstrated that sub-lethal exposure of pyrethroid-resistant mosquitoes to chlorfenapyr substantially reduces the proportion of infected mosquitoes and the intensity of the P. falciparum infection. This will likely also contribute to the reduction of malaria in communities beyond the direct killing of mosquitoes. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
8. Hearing of malaria mosquitoes is modulated by a beta-adrenergic-like octopamine receptor which serves as insecticide target.
- Author
-
Georgiades, Marcos, Alampounti, Alexandros, Somers, Jason, Su, Matthew P., Ellis, David A., Bagi, Judit, Terrazas-Duque, Daniela, Tytheridge, Scott, Ntabaliba, Watson, Moore, Sarah, Albert, Joerg T., and Andrés, Marta
- Subjects
OCTOPAMINE ,MOSQUITOES ,MALARIA ,INSECTICIDES ,ANOPHELES gambiae ,INSECTICIDE resistance ,MOSQUITO control - Abstract
Malaria mosquitoes acoustically detect their mating partners within large swarms that form transiently at dusk. Indeed, male malaria mosquitoes preferably respond to female flight tones during swarm time. This phenomenon implies a sophisticated context- and time-dependent modulation of mosquito audition, the mechanisms of which are largely unknown. Using transcriptomics, we identify a complex network of candidate neuromodulators regulating mosquito hearing in the species Anopheles gambiae. Among them, octopamine stands out as an auditory modulator during swarm time. In-depth analysis of octopamine auditory function shows that it affects the mosquito ear on multiple levels: it modulates the tuning and stiffness of the flagellar sound receiver and controls the erection of antennal fibrillae. We show that two α- and β-adrenergic-like octopamine receptors drive octopamine's auditory roles and demonstrate that the octopaminergic auditory control system can be targeted by insecticides. Our findings highlight octopamine as key for mosquito hearing and mating partner detection and as a potential novel target for mosquito control. Malaria mosquitoes use their ears to detect the flight tones of mating partners in the swarm as part of the courtship ritual. Here, the authors describe the auditory role of octopamine as a modulator of auditory plasticity in malaria mosquitoes and identify the main receptors involved in this process. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
9. Malaria rapid diagnostic tests reliably detect asymptomatic Plasmodium falciparum infections in school-aged children that are infectious to mosquitoes.
- Author
-
Hofer, Lorenz M., Kweyamba, Prisca A., Sayi, Rajabu M., Chabo, Mohamed S., Maitra, Sonali L., Moore, Sarah J., and Tambwe, Mgeni M.
- Subjects
RAPID diagnostic tests ,SCHOOL children ,MOSQUITO control ,INSECTICIDE resistance ,REVERSE transcriptase polymerase chain reaction ,PLASMODIUM falciparum ,MOSQUITOES - Abstract
Background: Asymptomatic malaria infections (Plasmodium falciparum) are common in school-aged children and represent a disease transmission reservoir as they are potentially infectious to mosquitoes. To detect and treat such infections, convenient, rapid and reliable diagnostic tools are needed. In this study, malaria rapid diagnostic tests (mRDT), light microscopy (LM) and quantitative polymerase chain reaction (qPCR) were used to evaluate their performance detecting asymptomatic malaria infections that are infectious to mosquitoes. Methods: One hundred seventy asymptomatic school-aged children (6–14 years old) from the Bagamoyo district in Tanzania were screened for Plasmodium spp. infections using mRDT (SD BIOLINE), LM and qPCR. In addition, gametocytes were detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR) for all qPCR-positive children. Venous blood from all P. falciparum positive children was fed to female Anopheles gambiae sensu stricto mosquitoes via direct membrane feeding assays (DMFAs) after serum replacement. Mosquitoes were dissected for oocyst infections on day 8 post-infection. Results: The P. falciparum prevalence in study participants was 31.7% by qPCR, 18.2% by mRDT and 9.4% by LM. Approximately one-third (31.2%) of asymptomatic malaria infections were infectious to mosquitoes in DMFAs. In total, 297 infected mosquitoes were recorded after dissections, from which 94.9% (282/297) were derived from infections detected by mRDT and 5.1% (15/297) from subpatent mRDT infections. Conclusion: The mRDT can be used reliably to detect children carrying gametocyte densities sufficient to infect high numbers of mosquitoes. Subpatent mRDT infections contributed marginally to the pool of oocyts-infected mosquitoes. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
10. CDC light traps underestimate the protective efficacy of an indoor spatial repellent against bites from wild Anopheles arabiensis mosquitoes in Tanzania.
- Author
-
Swai, Johnson Kyeba, Kibondo, Ummi Abdul, Ntabaliba, Watson Samuel, Ngoyani, Hassan Ahamad, Makungwa, Noely Otto, Mseka, Antony Pius, Chura, Madeleine Rose, Mascari, Thomas Michael, and Moore, Sarah Jane
- Subjects
ANOPHELES arabiensis ,INSECT traps ,MOSQUITOES ,REPELLENTS ,MAGIC squares - Abstract
Background: Methods for evaluating efficacy of core malaria interventions in experimental and operational settings are well established but gaps exist for spatial repellents (SR). The objective of this study was to compare three different techniques: (1) collection of blood-fed mosquitoes (feeding), (2) human landing catch (HLC), and (3) CDC light trap (CDC-LT) collections for measuring the indoor protective efficacy (PE) of the volatile pyrethroid SR product Mosquito Shield
™ Methods: The PE of Mosquito Shield™ against a wild population of pyrethroid-resistant Anopheles arabiensis mosquitoes was determined via feeding, HLC, or CDC-LT using four simultaneous 3 by 3 Latin squares (LS) run using 12 experimental huts in Tanzania. On any given night each technique was assigned to two huts with control and two huts with treatment. The LS were run twice over 18 nights to give a sample size of 72 replicates for each technique. Data were analysed by negative binomial regression. Results: The PE of Mosquito Shield™ measured as feeding inhibition was 84% (95% confidence interval (CI) 58–94% [Incidence Rate Ratio (IRR) 0.16 (0.06–0.42), p < 0.001]; landing inhibition 77% [64–86%, (IRR 0.23 (0.14–0.36) p < 0.001]; and reduction in numbers collected by CDC-LT 30% (0–56%) [IRR 0.70 (0.44–1.0) p = 0.160]. Analysis of the agreement of the PE measured by each technique relative to HLC indicated no statistical difference in PE measured by feeding inhibition and landing inhibition [IRR 0.73 (0.25–2.12) p = 0.568], but a significant difference in PE measured by CDC-LT and landing inhibition [IRR 3.13 (1.57–6.26) p = 0.001]. Conclusion: HLC gave a similar estimate of PE of Mosquito Shield™ against An. arabiensis mosquitoes when compared to measuring blood-feeding directly, while CDC-LT underestimated PE relative to the other techniques. The results of this study indicate that CDC-LT could not effectively estimate PE of the indoor spatial repellent in this setting. It is critical to first evaluate the use of CDC-LT (and other tools) in local settings prior to their use in entomological studies when evaluating the impact of indoor SR to ensure that they reflect the true PE of the intervention. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
11. Modified World Health Organization (WHO) Tunnel Test for Higher Throughput Evaluation of Insecticide-Treated Nets (ITNs) Considering the Effect of Alternative Hosts, Exposure Time, and Mosquito Density.
- Author
-
Kamande, Dismas S., Odufuwa, Olukayode G., Mbuba, Emmanuel, Hofer, Lorenz, and Moore, Sarah J.
- Subjects
INSECTICIDE-treated mosquito nets ,HIGH throughput screening (Drug development) ,MOSQUITOES ,ANOPHELES arabiensis ,MALARIA ,ANOPHELES gambiae ,INSECTICIDE resistance - Abstract
Simple Summary: Membrane feeding assays have been widely used in malaria transmission research and insectary colony maintenance. Here, we investigate whether a membrane feeder can replace animal baits for evaluating insecticide-treated nets (ITNs) bio-efficacy in the World Health Organization (WHO) tunnel test. The effect of (1) alternative baits, (2) exposure time, and (3) mosquito density on the endpoints of mosquito mortality and feeding inhibition or feeding success was investigated. Our results show that similar mortality at 24-h (M24) or 72-h (M72) is estimated using either a membrane feeder or a rabbit bait with an overnight (12 h) exposure. However, the membrane measured higher blood feeding inhibition than the rabbit, likely due to the absence of host cues, notably carbon dioxide. Therefore, the membrane feeder may be used instead of an animal bait to test mortality endpoints in WHO tunnel tests and blood feeding rates need to be improved. Experimental results demonstrated that using 50 or 100 mosquitoes per replicate measure the same for mortality and feeding inhibition endpoints with an animal bait. Therefore, WHO tunnel tests may be run with lower mosquito densities. This will reduce strain on insectaries to produce sufficient mosquitoes to meet the large sample sizes needed for bio-efficacy durability monitoring of chlorfenapyr ITNs that must be evaluated in "free-flying" bioassays. The standard World Health Organization (WHO) tunnel test is a reliable laboratory bioassay used for "free-flying" testing of insecticide-treated nets (ITNs) bio-efficacy where mosquitoes pass through a ITN sample to reach a live animal bait. Multiple parameters (i.e., bait, exposure time, and mosquito density) may affect the outcomes measured in tunnel tests. Therefore, a comparison was conducted of alternative hosts, exposure time, and lower mosquito density against the current gold standard test (100 mosquitoes, animal bait, and 12-h exposure) as outlined in the WHO ITN evaluation guideline. This was done with the aim to make the tunnel test cheaper and with higher throughput to meet the large sample sizes needed for bio-efficacy durability monitoring of chlorfenapyr ITNs that must be evaluated in "free-flying" bioassays. Methods: A series of experiments were conducted in the WHO tunnel test to evaluate the impact of the following factors on bio-efficacy endpoints of mosquito mortality at 24-h (M24) and 72-h (M72) and blood-feeding success (BFS): (1) baits (rabbit, membrane, human arm); (2) exposure time in the tunnel (1 h vs. 12 h); and (3) mosquito density (50 vs. 100). Finally, an alternative bioassay using a membrane with 50 mosquitoes (membrane-50) was compared to the gold standard bioassay (rabbit with 100 mosquitoes, rabbit-100). Pyrethroid-resistant Anopheles arabiensis and pyrethroid susceptible Anopheles gambiae were used to evaluate Interceptor
® and Interceptor® G2 ITNs. Results: Using a human arm as bait gave a very different BFS, which impacted measurements of M24 and M72. The same trends in M24, M72 and BFS were observed for both Interceptor® ITN and Interceptor® G2 unwashed and washed 20 times measured using the gold standard WHO tunnel test (rabbit-100) or rabbit with 50 mosquitoes (rabbit-50). M24, M72 and BFS were not statistically different when either 50 or 100 mosquitoes were used with rabbit bait in the tunnel bioassay for either the susceptible or resistant strains. No systematic difference was observed between rabbit-50 and rabbit-100 in the agreement by the Bland and Altman method (B&A). The mean difference was 4.54% (−22.54–31.62) in BFS and 1.71% (−28.71–32.12) in M72 for rabbit-50 versus rabbit-100. Similar M24, M72 and lower BFS was measured by membrane-50 compared to rabbit-100. No systematic difference was observed in the agreement between membrane-50 and rabbit-100, by B&A. The mean difference was 9.06% (−11.42–29.64) for BSF and −5.44% (−50.3–39.45) for M72. Both membrane-50, rabbit-50 and rabbit-100 predicted the superiority of Interceptor® G2 over Interceptor® ITN for the resistant strain on M72. Conclusion: These results demonstrate that WHO tunnel tests using rabbit bait may be run with 50 mosquitoes to increase sample sizes needed for bio-efficacy durability monitoring of ITNs in "free-flying" bioassays. Using a membrane feeder with 50 mosquitoes is a potential replacement for the WHO tunnel bioassay with animal bait if control blood feeding rates can be improved to 50% because blood feeding impacts mosquito survival after exposure to insecticides. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF
12. The Centres for Disease Control light trap (CDC-LT) and the human decoy trap (HDT) compared to the human landing catch (HLC) for measuring Anopheles biting in rural Tanzania.
- Author
-
Namango, Isaac Haggai, Marshall, Carly, Saddler, Adam, Ross, Amanda, Kaftan, David, Tenywa, Frank, Makungwa, Noely, Odufuwa, Olukayode G., Ligema, Godfrey, Ngonyani, Hassan, Matanila, Isaya, Bharmal, Jameel, Moore, Jason, Moore, Sarah J., and Hetzel, Manuel W.
- Subjects
INSECT traps ,ANOPHELES ,ANOPHELES arabiensis ,PREVENTIVE medicine ,MOSQUITOES - Abstract
Background: Vector mosquito biting intensity is an important measure to understand malaria transmission. Human landing catch (HLC) is an effective but labour-intensive, expensive, and potentially hazardous entomological surveillance tool. The Centres for Disease Control light trap (CDC-LT) and the human decoy trap (HDT) are exposure-free alternatives. This study compared the CDC-LT and HDT against HLC for measuring Anopheles biting in rural Tanzania and assessed their suitability as HLC proxies. Methods: Indoor mosquito surveys using HLC and CDC-LT and outdoor surveys using HLC and HDT were conducted in 2017 and in 2019 in Ulanga, Tanzania in 19 villages, with one trap/house/night. Species composition, sporozoite rates and density/trap/night were compared. Aggregating the data by village and month, the Bland–Altman approach was used to assess agreement between trap types. Results: Overall, 66,807 Anopheles funestus and 14,606 Anopheles arabiensis adult females were caught with 6,013 CDC-LT, 339 indoor-HLC, 136 HDT and 195 outdoor-HLC collections. Indoors, CDC-LT caught fewer An. arabiensis (Adjusted rate ratio [Adj.RR] = 0.35, 95% confidence interval [CI]: 0.27–0.46, p < 0.001) and An. funestus (Adj.RR = 0.63, 95%CI: 0.51–0.79, p < 0.001) than HLC per trap/night. Outdoors, HDT caught fewer An. arabiensis (Adj.RR = 0.04, 95%CI: 0.01–0.14, p < 0.001) and An. funestus (Adj.RR = 0.10, 95%CI: 0.07–0.15, p < 0.001) than HLC. The bias and variability in number of mosquitoes caught by the different traps were dependent on mosquito densities. The relative efficacies of both CDC-LT and HDT in comparison to HLC declined with increased mosquito abundance. The variability in the ratios was substantial for low HLC counts and decreased as mosquito abundance increased. The numbers of sporozoite positive mosquitoes were low for all traps. Conclusions: CDC-LT can be suitable for comparing mosquito populations between study arms or over time if accuracy in the absolute biting rate, compared to HLC, is not required. CDC-LT is useful for estimating sporozoite rates because large numbers of traps can be deployed to collect adequate mosquito samples. The present design of the HDT is not amenable for use in large-scale entomological surveys. Use of HLC remains important for estimating human exposure to mosquitoes as part of estimating the entomological inoculation rate (EIR). [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
13. Influence of testing modality on bioefficacy for the evaluation of Interceptor® G2 mosquito nets to combat malaria mosquitoes in Tanzania.
- Author
-
Kibondo, Ummi Abdul, Odufuwa, Olukayode G., Ngonyani, Saphina H., Mpelepele, Ahmadi B., Matanilla, Issaya, Ngonyani, Hassan, Makungwa, Noel O., Mseka, Antony P., Swai, Kyeba, Ntabaliba, Watson, Stutz, Susanne, Austin, James W., and Moore, Sarah Jane
- Subjects
MOSQUITO nets ,AEDES aegypti ,MOSQUITOES ,INSECTICIDE-treated mosquito nets ,ANOPHELES arabiensis ,INSECTICIDE resistance ,MALARIA - Abstract
Background: Insecticide-treated net (ITN) durability is evaluated using longitudinal bioefficacy and fabric integrity sampling post-distribution. Interceptor
® G2 was developed for resistance management and contains two adulticides: alpha-cypermethrin and chlorfenapyr; it is a pro-insecticide that is metabolized into its active form by mosquito-detoxifying enzymes and may be enhanced when the mosquito is physiologically active. To elucidate the impact of bioassay modality, mosquito exposures of the alphacypermethrin ITN Interceptor® and dual adulticide Interceptor® G2 were investigated. Methods: This study evaluated the performance of Interceptor® G2 compared to Interceptor® against local strains of mosquitoes in Tanzania. Unwashed and 20× times washed nets were tested. Efficacy of ITNs was measured by four bioassay types: (1) World Health Organisation (WHO) cone test (cone), (2) WHO tunnel test (tunnel), (3) Ifakara ambient chamber test (I-ACT) and (4) the WHO gold standard experimental hut test (hut). Hut tests were conducted against free-flying wild pyrethroid metabolically resistant Anopheles arabiensis and Culex quinquefasciatus. Cone, tunnel and I-ACT bioassays used laboratory-reared metabolically resistant An. arabiensis and Cx. quinquefasciatus and pyrethroid susceptible Anopheles gambiae sensu stricto and Aedes aegypti. Results: Against resistant strains, superiority of Interceptor® G2 over Interceptor® was observed in all "free-flying bioassays". In cone tests (which restrict mosquito flight), superiority of Interceptor® over Interceptor® G2 was recorded. Mortality of unwashed Interceptor® G2 among An. arabiensis was lowest in hut tests at 42.9% (95% CI: 37.3–48.5), although this increased to 66.7% (95% CI: 47.1–86.3) by blocking hut exit traps so mosquitoes presumably increased frequencies of contact with ITNs. Higher odds of mortality were consistently observed in Interceptor® G2 compared to Interceptor® in "free-flying" bioassays using An. arabiensis: tunnel (OR = 1.42 [95% CI:1.19–1.70], p < 0.001), I-ACT (OR = 1.61 [95% CI: 1.05–2.49], p = 0.031) and hut (OR = 2.53 [95% CI: 1.96–3.26], p < 0.001). Interceptor® and Interceptor® G2 showed high blood-feeding inhibition against all strains. Conclusion: Both free-flying laboratory bioassays (WHO Tunnel and I-ACT) consistently measured similarly, and both predicted the results of the experimental hut test. For bioefficacy monitoring and upstream product evaluation of ITNs in situ, the I-ACT may provide an alternative bioassay modality with improved statistical power. Interceptor G2® outperformed Interceptor® against pyrethroid-resistant strains, demonstrating the usefulness of chlorfenapyr in mitigation of malaria. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF
14. Semi-field evaluation of the exposure-free mosquito electrocuting trap and BG-Sentinel trap as an alternative to the human landing catch for measuring the efficacy of transfluthrin emanators against Aedes aegypti.
- Author
-
Tambwe, Mgeni M., Saddler, Adam, Kibondo, Ummi Abdul, Mashauri, Rajabu, Kreppel, Katharina S., Govella, Nicodem J., and Moore, Sarah J.
- Subjects
AEDES aegypti ,MOSQUITOES ,PYRETHROIDS ,VECTOR control ,HUMAN beings - Abstract
Background: The human landing catch (HLC) measures human exposure to mosquito bites and evaluates the efficacy of vector control tools. However, it may expose volunteers to potentially infected mosquitoes. The mosquito electrocuting trap (MET) and BG-Sentinel traps (BGS) represent alternative, exposure-free methods for sampling host-seeking mosquitoes. This study investigates whether these methods can be effectively used as alternatives to HLC for measuring the efficacy of transfluthrin emanator against Aedes aegypti. Methods: The protective efficacy (PE) of freestanding passive transfluthrin emanators (FTPEs), measured by HLC, MET and BGS, was compared in no-choice and choice tests. The collection methods were conducted 2 m from an experimental hut with FTPEs positioned at 3 m on either side of them. For the choice experiment, a competitor HLC was included 10 m from the first collection point. One hundred laboratory-reared Ae. aegypti mosquitoes were released and collected for 3 consecutive h. Results: In the no-choice test, each method measured similar PE: HLC: 66% (95% confidence interval [CI]: 50–82), MET: 55% (95% CI: 48–63) and BGS: 64% (95% CI: 54–73). The proportion of mosquitoes recaptured was consistent between methods (20–24%) in treatment and varied (47–71%) in the control. However, in choice tests, the PE measured by each method varied: HLC: 37% (95% CI: 25–50%), MET: 76% (95% CI: 61–92) and BGS trap: 0% (95% CI: 0–100). Recaptured mosquitoes were no longer consistent between methods in treatment (2–26%) and remained variable in the control (7–42%). FTPE provided 50% PE to the second HLC 10 m away. In the control, the MET and the BGS were less efficacious in collecting mosquitoes in the presence of a second HLC. Conclusions: Measuring the PE in isolation was fairly consistent for HLC, MET and BGS. Because HLC is not advisable, it is reasonable to use either MET or BGS as a proxy for HLC for testing volatile pyrethroid (VP) in areas of active arbovirus-endemic areas. The presence of a human host in close proximity invalidated the PE estimates from BGS and METs. Findings also indicated that transfluthrin can protect multiple people in the peridomestic area and that at short range mosquitoes select humans over the BGS. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
15. Predicting the impact of outdoor vector control interventions on malaria transmission intensity from semi-field studies.
- Author
-
Denz, Adrian, Njoroge, Margaret M., Tambwe, Mgeni M., Champagne, Clara, Okumu, Fredros, van Loon, Joop J. A., Hiscox, Alexandra, Saddler, Adam, Fillinger, Ulrike, Moore, Sarah J., and Chitnis, Nakul
- Subjects
MALARIA prevention ,VECTOR control ,MALARIA ,ANOPHELES arabiensis ,MOSQUITOES ,ANOPHELES - Abstract
Background: Semi-field experiments with human landing catch (HLC) measure as the outcome are an important step in the development of novel vector control interventions against outdoor transmission of malaria since they provide good estimates of personal protection. However, it is often infeasible to determine whether the reduction in HLC counts is due to mosquito mortality or repellency, especially considering that spatial repellents based on volatile pyrethroids might induce both. Due to the vastly different impact of repellency and mortality on transmission, the community-level impact of spatial repellents can not be estimated from such semi-field experiments. Methods: We present a new stochastic model that is able to estimate for any product inhibiting outdoor biting, its repelling effect versus its killing and disarming (preventing host-seeking until the next night) effects, based only on time-stratified HLC data from controlled semi-field experiments. For parameter inference, a Bayesian hierarchical model is used to account for nightly variation of semi-field experimental conditions. We estimate the impact of the products on the vectorial capacity of the given Anopheles species using an existing mathematical model. With this methodology, we analysed data from recent semi-field studies in Kenya and Tanzania on the impact of transfluthrin-treated eave ribbons, the odour-baited Suna trap and their combination (push–pull system) on HLC of Anopheles arabiensis in the peridomestic area. Results: Complementing previous analyses of personal protection, we found that the transfluthrin-treated eave ribbons act mainly by killing or disarming mosquitoes. Depending on the actual ratio of disarming versus killing, the vectorial capacity of An. arabiensis is reduced by 41 to 96% at 70% coverage with the transfluthrin-treated eave ribbons and by 38 to 82% at the same coverage with the push–pull system, under the assumption of a similar impact on biting indoors compared to outdoors. Conclusions: The results of this analysis of semi-field data suggest that transfluthrin-treated eave ribbons are a promising tool against malaria transmission by An. arabiensis in the peridomestic area, since they provide both personal and community protection. Our modelling framework can estimate the community-level impact of any tool intervening during the mosquito host-seeking state using data from only semi-field experiments with time-stratified HLC. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
16. Transfluthrin eave-positioned targeted insecticide (EPTI) reduces human landing rate (HLR) of pyrethroid resistant and susceptible malaria vectors in a semi-field simulated peridomestic space.
- Author
-
Tambwe, Mgeni M., Moore, Sarah, Hofer, Lorenz, Kibondo, Ummi A., and Saddler, Adam
- Subjects
- *
PYRETHROIDS , *INSECTICIDES , *ANOPHELES arabiensis , *ANOPHELES gambiae , *MOSQUITOES - Abstract
Background: Volatile pyrethroids (VPs) are proven to reduce human–vector contact for mosquito vectors. With increasing resistance to pyrethroids in mosquitoes, the efficacy of VPs, such as transfluthrin, may be compromised. Therefore, experiments were conducted to determine if the efficacy of transfluthrin eave-positioned targeted insecticide (EPTI) depends on the resistance status of malaria vectors. Methods: Ribbons treated with 5.25 g transfluthrin or untreated controls were used around the eaves of an experimental hut as EPTI inside a semi-field system. Mosquito strains with different levels of pyrethroid resistance were released simultaneously, recaptured by means of human landing catches (HLCs) and monitored for 24-h mortality. Technical-grade (TG) transfluthrin was used, followed by emulsifiable concentrate (EC) transfluthrin and additional mosquito strains. Generalized linear mixed models with binomial distribution were used to determine the impact of transfluthrin and mosquito strain on mosquito landing rates and 24-h mortality. Results: EPTI treated with 5.25 g of either TG or EC transfluthrin significantly reduced HLR of all susceptible and resistant Anopheles mosquitoes (Odds Ratio (OR) ranging from 0.14 (95% Confidence Interval (CI) [0.11–0.17], P < 0.001) to 0.57, (CI [0.42–0.78] P < 0.001). Both TG and EC EPTI had less impact on landing for the resistant Anopheles arabiensis (Mbita strain) compared to the susceptible Anopheles gambiae (Ifakara strain) (OR 1.50 [95% CI 1.18–1.91] P < 0.001) and (OR 1.67 [95% CI 1.29–2.17] P < 0.001), respectively. The EC EPTI also had less impact on the resistant An. arabiensis (Kingani strain) (OR 2.29 [95% CI 1.78–2.94] P < 0.001) compared to the control however the TG EPTI was equally effective against the resistant Kingani strain and susceptible Ifakara strain (OR 1.03 [95% CI 0.82–1.32] P = 0.75). Finally the EC EPTI was equally effective against the susceptible An. gambiae (Kisumu strain) and the resistant An. gambiae (Kisumu-kdr strain) (OR 0.98 [95% CI 0.74–1.30] P = 0.90). Conclusions: Transfluthrin-treated EPTI could be useful in areas with pyrethroid-resistant mosquitoes, but it remains unclear whether stronger resistance to pyrethroids will undermine the efficacy of transfluthrin. At this dosage, transfluthrin EPTI cannot be used to kill exposed mosquitoes. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
17. Semi-field evaluation of freestanding transfluthrin passive emanators and the BG sentinel trap as a "push-pull control strategy" against Aedes aegypti mosquitoes.
- Author
-
Tambwe, Mgeni M., Moore, Sarah J., Chilumba, Hassan, Swai, Johnson K., Moore, Jason D., Stica, Caleb, and Saddler, Adam
- Subjects
- *
AEDES aegypti , *MOSQUITOES , *ARBOVIRUS diseases , *MOSQUITO control , *MOSQUITO vectors , *AEDES , *TRAPPING , *BINOMIAL distribution - Abstract
Background: Spatial repellents that drive mosquitoes away from treated areas, and odour-baited traps, that attract and kill mosquitoes, can be combined and work synergistically in a push-pull system. Push-pull systems have been shown to reduce house entry and outdoor biting rates of malaria vectors and so have the potential to control other outdoor biting mosquitoes such as Aedes aegypti that transmit arboviral diseases. In this study, semi-field experiments were conducted to evaluate whether a push-pull system could be used to reduce bites from Aedes mosquitoes. Methods: The push and pull under investigation consisted of two freestanding transfluthrin passive emanators (FTPE) and a BG sentinel trap (BGS) respectively. The FTPE contained hessian strips treated with 5.25 g of transfluthrin active ingredient. The efficacies of FTPE and BGS alone and in combination were evaluated by human landing catch in a large semi-field system in Tanzania. We also investigated the protection of FTPE over six months. The data were analyzed using generalized linear mixed models with binomial distribution. Results: Two FTPE had a protective efficacy (PE) of 61.2% (95% confidence interval (CI): 52.2–69.9%) against the human landing of Ae. aegypti. The BGS did not significantly reduce mosquito landings; the PE was 2.1% (95% CI: −2.9–7.2%). The push-pull provided a PE of 64.5% (95% CI: 59.1–69.9%). However, there was no significant difference in the PE between the push-pull and the two FTPE against Ae. aegypti (P = 0.30). The FTPE offered significant protection against Ae. aegypti at month three, with a PE of 46.4% (95% CI: 41.1–51.8%), but not at six months with a PE of 2.2% (95% CI: −9.0–14.0%). Conclusions: The PE of the FTPE and the full push-pull are similar, indicative that bite prevention is primarily due to the activity of the FTPE. While these results are encouraging for the FTPE, further work is needed for a push-pull system to be recommended for Ae. aegypti control. The three-month protection against Ae. aegypti bites suggests that FTPE would be a useful additional control tool during dengue outbreaks, that does not require regular user compliance. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
18. Protecting migratory farmers in rural Tanzania using eave ribbons treated with the spatial mosquito repellent, transfluthrin.
- Author
-
Swai, Johnson K., Mmbando, Arnold S., Ngowo, Halfan S., Odufuwa, Olukayode G., Finda, Marceline F., Mponzi, Winifrida, Nyoni, Anna P., Kazimbaya, Deogratius, Limwagu, Alex J., Njalambaha, Rukiyah M., Abbasi, Saidi, Moore, Sarah J., Schellenberg, Joanna, Lorenz, Lena M., and Okumu, Fredros O.
- Subjects
ANOPHELES arabiensis ,RICE farmers ,MOSQUITOES ,INSECT traps - Abstract
Background: Many subsistence farmers in rural southeastern Tanzania regularly relocate to distant farms in river valleys to tend to crops for several weeks or months each year. While there, they live in makeshift semi-open structures, usually far from organized health systems and where insecticide-treated nets (ITNs) do not provide adequate protection. This study evaluated the potential of a recently developed technology, eave ribbons treated with the spatial repellent transfluthrin, for protecting migratory rice farmers in rural southeastern Tanzania against indoor-biting and outdoor-biting mosquitoes. Methods: In the first test, eave ribbons (0.1 m × 24 m each) treated with 1.5% transfluthrin solution were compared to untreated ribbons in 24 randomly selected huts in three migratory communities over 48 nights. Host-seeking mosquitoes indoors and outdoors were monitored nightly (18.00–07.00 h) using CDC light traps and CO
2 -baited BG malaria traps, respectively. The second test compared efficacies of eave ribbons treated with 1.5% or 2.5% transfluthrin in 12 huts over 21 nights. Finally, 286 farmers were interviewed to assess perceptions about eave ribbons, and their willingness to pay for them. Results: In the two experiments, when treated eave ribbons were applied, the reduction in indoor densities ranged from 56 to 77% for Anopheles arabiensis, 36 to 60% for Anopheles funestus, 72 to 84% for Culex, and 80 to 98% for Mansonia compared to untreated ribbons. Reduction in outdoor densities was 38 to 77% against An. arabiensis, 36 to 64% against An. funestus, 63 to 88% against Culex, and 47 to 98% against Mansonia. There was no difference in protection between the two transfluthrin doses. In the survey, 58% of participants perceived the ribbons to be effective in reducing mosquito bites. Ninety per cent were willing to pay for the ribbons, the majority of whom were willing to pay but less than US$2.17 (5000 TZS), one-third of the current prototype cost. Conclusions: Transfluthrin-treated eave ribbons can protect migratory rice farmers, living in semi-open makeshift houses in remote farms, against indoor-biting and outdoor-biting mosquitoes. The technology is acceptable to users and could potentially complement ITNs. Further studies should investigate durability and epidemiological impact of eave ribbons, and the opportunities for improving affordability to users. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
19. Mosquito feeding behavior and how it influences residual malaria transmission across Africa.
- Author
-
Sherrard-Smith, Ellie, Skarp, Janetta E., Beale, Andrew D., Fornadel, Christen, Norris, Laura C., Moore, Sarah J., Mihreteab, Selam, Charlwood, Jacques Derek, Bhatt, Samir, Winskill, Peter, Griffin, Jamie T., and Churcher, Thomas S.
- Subjects
MALARIA ,MOSQUITOES ,HUMAN behavior ,VECTOR control ,META-analysis - Abstract
The antimalarial efficacy of the most important vector control interventions--long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)--primarily protect against mosquitoes' biting people when they are in bed and indoors. Mosquito bites taken outside of these times contribute to residual transmission which determines the maximum effectiveness of current malaria prevention. The likelihood mosquitoes feed outside the time of day when LLINs and IRS can protect people is poorly understood, and the proportion of bites received outdoors may be higher after prolonged vector control. A systematic review of mosquito and human behavior is used to quantify and estimate the public health impact of outdoor biting across Africa. On average 79% of bites by the major malaria vectors occur during the time when people are in bed. This estimate is substantially lower than previous predictions, with results suggesting a nearly 10% lower proportion of bites taken at the time when people are beneath LLINs since the year 2000. Across Africa, this higher outdoor transmission is predicted to result in an estimated 10.6 million additional malaria cases annually if universal LLIN and IRS coverage was achieved. Higher outdoor biting diminishes the cases of malaria averted by vector control. This reduction in LLIN effectiveness appears to be exacerbated in areas where mosquito populations are resistant to insecticides used in bed nets, but no association was found between physiological resistance and outdoor biting. Substantial spatial heterogeneity in mosquito biting behavior between communities could contribute to differences in effectiveness of malaria control across Africa. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
20. Repellents and New "Spaces of Concern" in Global Health.
- Author
-
Kelly, Ann H., Koudakossi, Hermione N. Boko, and Moore, Sarah J.
- Subjects
REPELLENTS ,PUBLIC health ,MALARIA prevention ,INSECTICIDES ,MOSQUITOES ,ANIMALS ,ANTHROPOLOGY ,MALARIA ,PROTECTIVE clothing ,PEST control ,WORLD health ,THERAPEUTICS - Abstract
Today, malaria prevention hinges upon two domestic interventions: insecticide-treated bed nets and indoor residual spraying. As mosquitoes grow resistant to these tools, however, novel approaches to vector control have become a priority area of malaria research and development. Spatial repellency, a volumetric mode of action that seeks to reduce disease transmission by creating an atmosphere inimical to mosquitoes, represents one way forward. Drawing from research that sought to develop new repellent chemicals in conversation with users from sub-Saharan Africa and the United States, we consider the implications of a non-insecticidal paradigm of vector control for how we understand the political ecology of malaria. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
21. The Mode of Action of Spatial Repellents and Their Impact on Vectorial Capacity of Anopheles gambiae sensu stricto.
- Author
-
Ogoma, Sheila B., Ngonyani, Hassan, Simfukwe, Emmanuel T., Mseka, Antony, Moore, Jason, Maia, Marta F., Moore, Sarah J., and Lorenz, Lena M.
- Subjects
MALARIA transmission ,ANOPHELES ,VECTOR control ,INSECTICIDES ,MOSQUITO vectors ,PYRETHROIDS - Abstract
Malaria vector control relies on toxicity of insecticides used in long lasting insecticide treated nets and indoor residual spraying. This is despite evidence that sub–lethal insecticides reduce human–vector contact and malaria transmission. The impact of sub–lethal insecticides on host seeking and blood feeding of mosquitoes was measured. Taxis boxes distinguished between repellency and attraction inhibition of mosquitoes by measuring response of mosquitoes towards or away from Transfluthrin coils and humans. Protective effective distance of coils and long-term effects on blood feeding were measured in the semi–field tunnel and in a Peet Grady chamber. Laboratory reared pyrethroid susceptible Anopheles gambiae sensu stricto mosquitoes were used. In the taxis boxes, a higher proportion of mosquitoes (67%–82%) were activated and flew towards the human in the presence of Transfluthrin coils. Coils did not hinder attraction of mosquitoes to the human. In the semi–field Tunnel, coils placed 0.3 m from the human reduced feeding by 86% (95% CI [0.66; 0.95]) when used as a “bubble” compared to 65% (95% CI [0.51; 0.76]) when used as a “point source”. Mosquitoes exposed to coils inside a Peet Grady chamber were delayed from feeding normally for 12 hours but there was no effect on free flying and caged mosquitoes exposed in the semi–field tunnel. These findings indicate that airborne pyrethroids minimize human–vector contact through reduced and delayed blood feeding. This information is useful for the development of target product profiles of spatial repellent products that can be used to complement mainstream malaria vector control tools. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
22. Use of a semi-field system to evaluate the efficacy of topical repellents under user conditions provides a disease exposure free technique comparable with field data.
- Author
-
Sangoro, Onyango, Lweitojera, Dickson, Simfukwe, Emmanuel, Ngonyani, Hassan, Mbeyela, Edgar, Lugiko, Daniel, Kihonda, Japhet, Maia, Marta, and Moore, Sarah
- Subjects
ARTHROPODA ,MOSQUITOES ,BITES & stings ,TOLUAMIDES ,ANOPHELES arabiensis ,MALARIA - Abstract
Background Before topical repellents can be employed as interventions against arthropod bites, their efficacy must be established. Currently, laboratory or field tests, using human volunteers, are the main methods used for assessing the efficacy of topical repellents. However, laboratory tests are not representative of real life conditions under which repellents are used and fieldtesting potentially exposes human volunteers to disease. There is, therefore, a need to develop methods to test efficacy of repellents under real life conditions while minimizing volunteer exposure to disease. Methods A lotion-based, 15% N, N-Diethyl-3-methylbenzamide (DEET) repellent and 15% DEET in ethanol were compared to a placebo lotion in a 200 sq m (10 m × 20 m) semi-field system (SFS) against laboratory-reared Anopheles arabiensis mosquitoes and in full field settings against wild malaria vectors and nuisance-biting mosquitoes. The average percentage protection against biting mosquitoes over four hours in the SFS and field setting was determined. A Poisson regression model was then used to determine relative risk of being bitten when wearing either of these repellents compared to the placebo. Results Average percentage protection of the lotion-based 15% DEET repellent after four hours of mosquito collection was 82.13% (95% CI 75.94-88.82) in the semi-field experiments and 85.10% (95% CI 78.97-91.70) in the field experiments. Average percentage protection of 15% DEET in ethanol after four hours was 71.29% (CI 61.77-82.28) in the semi-field system and 88.24% (84.45-92.20) in the field. Conclusions Semi-field evaluation results were comparable to full-field evaluations, indicating that such systems could be satisfactorily used in measuring efficacy of topically applied mosquito repellents, thereby avoiding risks of exposure to mosquito-borne pathogens, associated with field testing. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
23. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes.
- Author
-
Okumu, Fredros O., Kiware, Samson S., Moore, Sarah J., and Killeen, Gerry F.
- Subjects
ANOPHELES arabiensis ,MOSQUITOES ,MALARIA ,INFECTIOUS disease transmission ,INSECTICIDES ,PARAMETERIZATION - Abstract
Background: Indoor residual insecticide spraying (IRS) and long-lasting insecticide treated nets (LLINs) are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. Methods: A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset®, PermaNet 2.0®, Icon Life® nets) with IRS (pirimiphos methyl, lambda cyhalothrin, DDT), in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Results: Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset® or PermaNet 2.0® nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon LifeW nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Conclusions: Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used), but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used) or even regressive (e.g. when DDT is used for the IRS). Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of whether they are delivered as LLINs or IRS. The insecticidal action of LLINs and IRS probably already approaches their absolute limit of potential impact upon this persistent vector so personal protection of nets should be enhanced by improving the physical integrity and durability. Combining LLINs and non-pyrethroid IRS in residual transmission systems may nevertheless be justified as a means to manage insecticide resistance and prevent potential rebound of not only An. arabiensis, but also more potent, vulnerable and historically important species such as Anopheles gambiae and Anopheles funestus. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
24. Evaluation of gravid traps for the collection of Culex quinquefasciatus, a vector of lymphatic filariasis in Tanzania.
- Author
-
Irish, Seth R., Moore, Sarah J., Derua, Yahya A., Bruce, Jane, and Cameron, Mary M.
- Subjects
CULEX quinquefasciatus ,MOSQUITOES ,INSECT pest control - Abstract
Background Although several studies have suggested that gravid traps might be useful for collection of mosquitoes, particularly Culex quinquefasciatus, to monitor transmission of the nematode Wuchereria bancrofti (xenomonitoring), there has not been a study to see which of the currently available gravid traps is most effective in endemic areas. The present study evaluated the comparative efficacy for collection of Cx quinquefasciatus of four commercially available gravid traps: the CDC, Frommer Updraft, Reiter-Cummings and Harris County traps. Method Trap evaluations were conducted in two locations in Tanzania, Ifakara and Tanga. Mosquitoes collected were identified to species, sex, and gonotrophic status. Results In both locations, the CDC gravid trap collected the highest number of mosquitoes, the highest number of Cx quinquefasciatus, and the highest proportion of gravid mosquitoes. Although it damaged the highest proportion of mosquitoes as they passed through the trap fan, the CDC gravid trap also contained the highest number of living mosquitoes, when the traps were collected in the morning. The CDC gravid traps collected significantly more phlebotomine sandflies than the other traps and in Tanga, where they were more frequent, the highest number of biting midges. Conclusion The effectiveness of all four gravid traps should encourage the sampling of Cx quinquefasciatus where it is an important disease vector or nuisance mosquito. The unexpected collection of phlebotomine sandflies and biting midges indicates that gravid traps might usefully collect other insects, including those of medical importance. [ABSTRACT FROM PUBLISHER]
- Published
- 2013
- Full Text
- View/download PDF
25. A Modified Experimental Hut Design for Studying Responses of Disease-Transmitting Mosquitoes to Indoor Interventions: The Ifakara Experimental Huts.
- Author
-
Okumu, Fredros O., Moore, Jason, Mbeyela, Edgar, Sherlock, Mark, Sangusangu, Robert, Ligamba, Godfrey, Russell, Tanya, and Moore, Sarah J.
- Subjects
MOSQUITOES ,INFECTIOUS disease transmission ,VECTOR control ,INSECTICIDES ,HUTS ,ANOPHELES gambiae ,TRAPPING ,WALL panels ,BUILDING design & construction - Abstract
Differences between individual human houses can confound results of studies aimed at evaluating indoor vector control interventions such as insecticide treated nets (ITNs) and indoor residual insecticide spraying (IRS). Specially designed and standardised experimental huts have historically provided a solution to this challenge, with an added advantage that they can be fitted with special interception traps to sample entering or exiting mosquitoes. However, many of these experimental hut designs have a number of limitations, for example: 1) inability to sample mosquitoes on all sides of huts, 2) increased likelihood of live mosquitoes flying out of the huts, leaving mainly dead ones, 3) difficulties of cleaning the huts when a new insecticide is to be tested, and 4) the generally small size of the experimental huts, which can misrepresent actual local house sizes or airflow dynamics in the local houses. Here, we describe a modified experimental hut design - The Ifakara Experimental Huts- and explain how these huts can be used to more realistically monitor behavioural and physiological responses of wild, free-flying disease-transmitting mosquitoes, including the African malaria vectors of the species complexes Anopheles gambiae and Anopheles funestus, to indoor vector control-technologies including ITNs and IRS. Important characteristics of the Ifakara experimental huts include: 1) interception traps fitted onto eave spaces and windows, 2) use of eave baffles (panels that direct mosquito movement) to control exit of live mosquitoes through the eave spaces, 3) use of replaceable wall panels and ceilings, which allow safe insecticide disposal and reuse of the huts to test different insecticides in successive periods, 4) the kit format of the huts allowing portability and 5) an improved suite of entomological procedures to maximise data quality. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
26. A systematic review of mosquito coils and passive emanators: defining recommendations for spatial repellency testing methodologies.
- Author
-
Ogoma, Sheila B., Moore, Sarah J., and Maia, Marta F.
- Subjects
- *
INSECTICIDES , *DOSE-response relationship in biochemistry , *PEST control , *INTERNET in medicine , *MEDICAL informatics , *MOSQUITOES - Abstract
Mosquito coils, vaporizer mats and emanators confer protection against mosquito bites through the spatial action of emanated vapor or airborne pyrethroid particles. These products dominate the pest control market; therefore, it is vital to characterize mosquito responses elicited by the chemical actives and their potential for disease prevention. The aim of this review was to determine effects of mosquito coils and emanators on mosquito responses that reduce human-vector contact and to propose scientific consensus on terminologies and methodologies used for evaluation of product formats that could contain spatial chemical actives, including indoor residual spraying (IRS), long lasting insecticide treated nets (LLINs) and insecticide treated materials (ITMs). PubMed, (National Centre for Biotechnology Information (NCBI), U.S. National Library of Medicine, NIH), MEDLINE, LILAC, Cochrane library, IBECS and Armed Forces Pest Management Board Literature Retrieval System search engines were used to identify studies of pyrethroid based coils and emanators with key-words "Mosquito coils" "Mosquito emanators" and "Spatial repellents". It was concluded that there is need to improve statistical reporting of studies,and reach consensus in the methodologies and terminologies used through standardized testing guidelines. Despite differing evaluation methodologies, data showed that coils and emanators induce mortality, deterrence, repellency as well as reduce the ability of mosquitoes to feed on humans. Available data on efficacy outdoors, dose-response relationships and effective distance of coils and emanators is inadequate for developing a target product profile (TPP), which will be required for such chemicals before optimized implementation can occur for maximum benefits in disease control. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
27. Plant-based insect repellents: a review of their efficacy, development and testing.
- Author
-
Maia, Marta Ferreira and Moore, Sarah J.
- Subjects
- *
INSECT baits & repellents , *ETHNOBOTANY , *MOSQUITOES , *NATURAL products , *PESTICIDES - Abstract
Plant-based repellents have been used for generations in traditional practice as a personal protection measure against host-seeking mosquitoes. Knowledge on traditional repellent plants obtained through ethnobotanical studies is a valuable resource for the development of new natural products. Recently, commercial repellent products containing plant-based ingredients have gained increasing popularity among consumers, as these are commonly perceived as "safe" in comparison to long-established synthetic repellents although this is sometimes a misconception. To date insufficient studies have followed standard WHO Pesticide Evaluation Scheme guidelines for repellent testing. There is a need for further standardized studies in order to better evaluate repellent compounds and develop new products that offer high repellency as well as good consumer safety. This paper presents a summary of recent information on testing, efficacy and safety of plant-based repellents as well as promising new developments in the field. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
28. Comparison of the CDC Backpack aspirator and the Prokopack aspirator for sampling indoor- and outdoor-resting mosquitoes in southern Tanzania.
- Author
-
Maia, Marta F., Robinson, Ailie, John, Alex, Mgando, Joseph, Simfukwe, Emmanuel, and Moore, Sarah J.
- Subjects
MOSQUITOES ,PYRETHRUM (Plant) - Abstract
Background: Resting mosquitoes can easily be collected using an aspirating device. The most commonly used mechanical aspirator is the CDC Backpack aspirator. Recently, a simple, and low-cost aspirator called the Prokopack has been devised and proved to have comparable performance. The following study evaluates the Prokopack aspirator compared to the CDC backpack aspirator when sampling resting mosquitoes in rural Tanzania. Methods: Mosquitoes were sampled in- and outdoors of 48 typical rural African households using both aspirators. The aspirators were rotated between collectors and households in a randomized, Latin Square design. Outdoor collections were performed using artificial resting places (large barrel and car tyre), underneath the outdoor kitchen (kibanda) roof and from a drop-net. Data were analysed with generalized linear models. Results: The number of mosquitoes collected using the CDC Backpack and the Prokopack aspirator were not significantly different both in- and outdoors (indoors p = 0.735; large barrel p = 0.867; car tyre p = 0.418; kibanda p = 0.519). The Prokopack was superior for sampling of drop-nets due to its smaller size. The number mosquitoes collected per technician was more consistent when using the Prokopack aspirator. The Prokopack was more userfriendly: technicians preferred using the it over the CDC backpack aspirator as it weighs considerably less, retains its charge for longer and is easier to manoeuvre. Conclusions: The Prokopack proved in the field to be more advantageous than the CDC Backpack aspirator. It can be self assembled using simple, low-cost and easily attainable materials. This device is a useful tool for researchers or vector-control surveillance programs operating in rural Africa, as it is far simpler and quicker than traditional means of sampling resting mosquitoes. Further longitudinal evaluations of the Prokopack aspirator versus the gold standard pyrethrum spray catch for indoor resting catches are recommended. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
29. Development and Field Evaluation of a Synthetic Mosquito Lure That Is More Attractive than Humans.
- Author
-
Okumu, Fredros O., Killeen, Gerry F., Ogoma, Sheila, Biswaro, Lubandwa, Smallegange, Renate C., Mbeyela, Edgar, Titus, Emmanuel, Munk, Cristina, Ngonyani, Hassan, Takken, Willem, Mshinda, Hassan, Mukabana, Wolfgang R., and Moore, Sarah J.
- Subjects
MOSQUITOES ,FRESHWATER animals ,DIPTERA ,CARBON compounds ,CARBOXYLIC acids ,FLIES ,INSECTS ,AGROMYZIDAE ,BLOOD - Abstract
Background: Disease transmitting mosquitoes locate humans and other blood hosts by identifying their characteristic odor profiles. Using their olfactory organs, the mosquitoes detect compounds present in human breath, sweat and skins, and use these as cues to locate and obtain blood from the humans. These odor compounds can be synthesized in vitro, then formulated to mimic humans. While some synthetic mosquito lures already exist, evidence supporting their utility is limited to laboratory settings, where long-range stimuli cannot be investigated. Methodology and Principal Findings: Here we report the development and field evaluation of an odor blend consisting of known mosquito attractants namely carbon dioxide, ammonia and carboxylic acids, which was optimized at distances comparable with attractive ranges of humans to mosquitoes. Binary choice assays were conducted inside a large-cage semifield enclosure using attractant-baited traps placed 20 m apart. This enabled high-throughput optimization of concentrations at which the individual candidate attractants needed to be added so as to obtain a blend maximally attractive to laboratory-reared An. gambiae. To determine whether wild mosquitoes would also be attracted to this synthetic odor blend and to compare it with whole humans under epidemiologically relevant conditions, field experiments were conducted inside experimental huts, where the blend was compared with 10 different adult male volunteers (20-34 years old). The blend attracted 3 to 5 times more mosquitoes than humans when the two baits were in different experimental huts (10-100 metres apart), but was equally or less attractive than humans when compared side by side within same huts. Conclusion and Significance: This highly attractive substitute for human baits might enable development of technologies for trapping mosquitoes in numbers sufficient to prevent rather than merely monitor transmission of mosquito-borne diseases. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
30. Can trials of spatial repellents be used to estimate mosquito movement?
- Author
-
Malinga, Josephine, Maia, Marta, Moore, Sarah, and Ross, Amanda
- Subjects
AEDES aegypti ,MOSQUITOES ,REPELLENTS ,MAXIMUM likelihood statistics ,SECONDARY analysis - Abstract
Background: Knowledge of mosquito movement would aid the design of effective intervention strategies against malaria. However, data on mosquito movement through mark-recapture or genetics studies are challenging to collect, and so are not available for many sites. An additional source of information may come from secondary analyses of data from trials of repellents where household mosquito densities are collected. Using the study design of published trials, we developed a statistical model which can be used to estimate the movement between houses for mosquitoes displaced by a spatial repellent. The method uses information on the different distributions of mosquitoes between houses when no households are using spatial repellents compared to when there is incomplete coverage. The parameters to be estimated are the proportion of mosquitoes repelled, the proportion of those repelled that go to another house and the mean distance of movement between houses. Estimation is by maximum likelihood. Results: We evaluated the method using simulation and found that data on the seasonal pattern of mosquito densities were required, which could be additionally collected during a trial. The method was able to provide accurate estimates from simulated data, except when the setting has few mosquitoes overall, few repelled, or the coverage with spatial repellent is low. The trial that motivated our analysis was found to have too few mosquitoes caught and repelled for our method to provide accurate results. Conclusions: We propose that the method could be used as a secondary analysis of trial data to gain estimates of mosquito movement in the presence of repellents for trials with sufficient numbers of mosquitoes caught and repelled and with coverage levels which allow sufficient numbers of houses with and without repellent. Estimates from this method may supplement those from mark-release-recapture studies, and be used in designing effective malaria intervention strategies, parameterizing mathematical models and in designing trials of vector control interventions. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
31. A new perspective on the application of mosquito repellents.
- Author
-
Moore, Sarah Jane
- Subjects
- *
MALARIA prevention , *PLASMODIUM , *MOSQUITO vectors , *RANDOMIZED controlled trials , *ANIMALS , *INSECT baits & repellents , *MOSQUITOES , *PEST control ,MALARIA transmission - Published
- 2016
- Full Text
- View/download PDF
32. Malaria infection in mosquitoes decreases the personal protection offered by permethrin-treated bednets.
- Author
-
Thiévent, Kevin, Hofer, Lorenz, Rapp, Elise, Tambwe, Mgeni Mohamed, Moore, Sarah, and Koella, Jacob C.
- Subjects
MALARIA ,MOSQUITOES ,PERMETHRIN ,INSECTICIDE-treated mosquito nets ,PLASMODIUM berghei ,ANOPHELES arabiensis - Abstract
Background: Insecticides targeting adult mosquitoes are the main way of controlling malaria. They work not only by killing mosquitoes, but also by repelling and irritating them. Indeed their repellent action gives valuable personal protection against biting mosquitoes. In the context of malaria control this personal protection is especially relevant when mosquitoes are infectious, whereas to protect the community we would prefer that the mosquitoes that are not yet infectious are killed (so, not repelled) by the insecticide. As the infectious stage of malaria parasites increases the motivation of mosquitoes to bite, we predicted that it would also change their behavioural response to insecticides. Results: With two systems, a laboratory isolate of the rodent malaria
Plasmodium berghei infectingAnopheles gambiae and several isolates ofP. falciparum obtained from schoolchildren in Tanzania that infectedAnopheles arabiensis , we found that mosquitoes harbouring the infectious stage (the sporozoites) of the parasite were less repelled by permethrin-treated nets than uninfected ones. Conclusions: Our results suggest that, at least in the laboratory, malaria infection decreases the personal protection offered by insecticide-treated nets at the stage where the personal protection is most valuable. Further studies must investigate whether these results hold true in the field and whether the less effective personal protection can be balanced by increased community protection. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
33. Do topical repellents divert mosquitoes within a community?
- Author
-
Maia, Marta, Sangoro, Peter, Thele, Max, Turner, Elizabeth, and Moore, Sarah
- Subjects
REPELLENTS ,MOSQUITOES - Abstract
An abstract of the article "Do topical repellents divert mosquitoes within a community?," by MartaMarta Maia, Peter Sangoro, Max Thele, Elizabeth Turner and Sarah Moore is presented.
- Published
- 2012
- Full Text
- View/download PDF
34. Hitting the right note at the right time: Circadian control of audibility in Anopheles mosquito mating swarms is mediated by flight tones.
- Author
-
Somers, Jason, Georgiades, Marcos, Su, Matthew P., Bagi, Judit, Andrés, Marta, Alampounti, Alexandros, Mills, Gordon, Ntabaliba, Watson, Moore, Sarah J., Spaccapelo, Roberta, and Albert, Joerg T.
- Subjects
- *
ANOPHELES , *MOSQUITO control , *INSECT flight , *MOSQUITOES , *LIFE sciences - Abstract
The article presents hitting the right note at the right time: Circadian control of audibility in Anopheles mosquito mating swarms is mediated by flight tones. It mentions that the flight tones of individual mosquitoes occupy narrow, partly non-overlapping frequency ranges, suggesting that the audibility of individual females varies across males.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.