1. Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability.
- Author
-
Ding, Manman, Sun, Leijie, Chen, Xiayan, Luo, Tianyuan, Ye, Tian, Zhao, Chunyan, Zhang, Wenfeng, and Chang, Haixin
- Subjects
- *
SOLAR cells , *MONOMOLECULAR films , *CRYSTALS , *CRYSTAL grain boundaries , *GRAIN , *ORGANIC farming - Abstract
High-performance perovskite solar cell processed in ambient air is a big challenge due to the sensitivity of perovskite films to air. Many defects are generated easily at grain boundaries and in the perovskite films by conventional molecular/ion precursor solution mixing methods (i.e., solution mixing-based method), which restrict its stability in air and photovoltaic performance with most power conversion efficiency less than 15%. In this work, we develop a facile method for air-processed, highly crystalline, quasi-3D perovskite film with large grain size (over 6.6 times bigger than that from control conventional method) and improved ambient air stability by phenylethylammonium (PEA)-doped MA1−xPEAxPbI3 perovskite crystal engineering. Furthermore, benefiting from PEA+ doping and crystal engineering, the trap density decreases 50% compared with control. Consequently, with the optimal concentration of PEA doping, the power conversion efficiency increases from 15.6% for conventional solution mixing-based perovskite solar cells to 17.6% for crystal engineering-based ones with significantly improved moisture stability. The perovskite crystal engineering-based solar cells without any encapsulation retain 75% of the initial performance after 30-day storage in ambient air under a relative humidity of 50 ± 10%, and two times faster degradation rate is observed for control, conventional solution mixing-based perovskite solar cells when compared with crystal engineering-based ones. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF