1. Biomolecular Adsorption on Nanomaterials: Combining Molecular Simulations with Machine Learning.
- Author
-
Saeedimasine M, Rahmani R, and Lyubartsev AP
- Subjects
- Adsorption, Thermodynamics, Amino Acids chemistry, Neural Networks, Computer, Algorithms, Molecular Dynamics Simulation, Machine Learning, Nanostructures chemistry
- Abstract
Adsorption free energies of 32 small biomolecules (amino acids side chains, fragments of lipids, and sugar molecules) on 33 different nanomaterials, computed by the molecular dynamics - metadynamics methodology, have been analyzed using statistical machine learning approaches. Multiple unsupervised learning algorithms (principal component analysis, agglomerative clustering, and K-means) as well as supervised linear and nonlinear regression algorithms (linear regression, AdaBoost ensemble learning, artificial neural network) have been applied. As a result, a small set of biomolecules has been identified, knowledge of adsorption free energies of which to a specific nanomaterial can be used to predict, within the developed machine learning model, adsorption free energies of other biomolecules. Furthermore, the methodology of grouping of nanomaterials according to their interactions with biomolecules has been presented.
- Published
- 2024
- Full Text
- View/download PDF