1. Balancing selection and the crossing of fitness valleys in structured populations: diversification in the gametophytic self-incompatibility system.
- Author
-
Stetsenko R, Brom T, Castric V, and Billiard S
- Subjects
- Haplotypes, Mutation, Germ Cells, Plant, Alleles, Models, Genetic, Genetics, Population
- Abstract
The self-incompatibility locus (S-locus) of flowering plants displays a striking allelic diversity. How such a diversity has emerged remains unclear. In this article, we performed numerical simulations in a finite island population genetics model to investigate how population subdivision affects the diversification process at a S-locus, given that the two-gene architecture typical of S-loci involves the crossing of a fitness valley. We show that population structure slightly reduces the parameter range allowing for the diversification of self-incompatibility haplotypes (S-haplotypes), but at the same time also increases the number of these haplotypes maintained in the whole metapopulation. This increase is partly due to a higher rate of diversification and replacement of S-haplotypes within and among demes. We also show that the two-gene architecture leads to a higher diversity in structured populations compared with a simpler genetic architecture, where new S-haplotypes appear in a single mutation step. Overall, our results suggest that population subdivision can act in two opposite directions: it renders S-haplotypes diversification easier, although it also increases the risk that the self-incompatibility system is lost., (© The Author(s) 2022. Published by Oxford University Press on behalf of The Society for the Study of Evolution (SSE). All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF